cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286034 Compound filter: a(n) = P(A046523(n), A161942(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 8, 3, 49, 8, 34, 3, 239, 124, 97, 8, 165, 30, 34, 34, 1051, 47, 1237, 17, 508, 21, 97, 8, 727, 565, 331, 74, 165, 122, 733, 3, 4403, 34, 502, 34, 7911, 192, 196, 72, 2302, 233, 526, 68, 508, 1237, 97, 8, 3051, 1774, 5368, 97, 1782, 380, 727, 97, 727, 51, 1231, 122, 3220, 498, 34, 288, 18019, 331, 733, 155, 2713, 34, 733, 47, 35317, 705, 1897, 873, 1047, 34
Offset: 1

Views

Author

Antti Karttunen, May 07 2017

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A161942(n) = A000265(sigma(n));
    A286034(n) = (2 + ((A046523(n)+A161942(n))^2) - A046523(n) - 3*A161942(n))/2;
    for(n=1, 16384, write("b286034.txt", n, " ", A286034(n)));
    
  • Python
    from sympy import factorint, divisors, divisor_sigma
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a000265(n): return max(list(filter(lambda i: i%2 == 1, divisors(n))))
    def a161942(n): return a000265(divisor_sigma(n))
    def a(n): return T(a046523(n), a161942(n)) # Indranil Ghosh, May 07 2017
  • Scheme
    (define (A286034 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A161942 n)) 2) (- (A046523 n)) (- (* 3 (A161942 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A161942(n))^2) - A046523(n) - 3*A161942(n)).