A286034 Compound filter: a(n) = P(A046523(n), A161942(n)), where P(n,k) is sequence A000027 used as a pairing function.
1, 8, 3, 49, 8, 34, 3, 239, 124, 97, 8, 165, 30, 34, 34, 1051, 47, 1237, 17, 508, 21, 97, 8, 727, 565, 331, 74, 165, 122, 733, 3, 4403, 34, 502, 34, 7911, 192, 196, 72, 2302, 233, 526, 68, 508, 1237, 97, 8, 3051, 1774, 5368, 97, 1782, 380, 727, 97, 727, 51, 1231, 122, 3220, 498, 34, 288, 18019, 331, 733, 155, 2713, 34, 733, 47, 35317, 705, 1897, 873, 1047, 34
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- MathWorld, Pairing Function
Programs
-
PARI
A000265(n) = (n >> valuation(n, 2)); A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A161942(n) = A000265(sigma(n)); A286034(n) = (2 + ((A046523(n)+A161942(n))^2) - A046523(n) - 3*A161942(n))/2; for(n=1, 16384, write("b286034.txt", n, " ", A286034(n)));
-
Python
from sympy import factorint, divisors, divisor_sigma def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def a000265(n): return max(list(filter(lambda i: i%2 == 1, divisors(n)))) def a161942(n): return a000265(divisor_sigma(n)) def a(n): return T(a046523(n), a161942(n)) # Indranil Ghosh, May 07 2017
-
Scheme
(define (A286034 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A161942 n)) 2) (- (A046523 n)) (- (* 3 (A161942 n))) 2)))