cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286077 Number of permutations of [n] with a strongly unimodal cycle size list.

Original entry on oeis.org

1, 1, 1, 5, 16, 80, 468, 3220, 24436, 218032, 2114244, 22759788, 267150264, 3413938512, 46668380592, 690881123856, 10841100147072, 181434400544160, 3215124610986240, 60280035304993920, 1186176116251848960, 24624604679704053120, 534223121657911528320
Offset: 0

Views

Author

Alois P. Heinz, May 01 2017

Keywords

Comments

Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.
Strongly unimodal means strictly increasing then strictly decreasing.

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(t=0 and n>i*(i-1)/2, 0,
          `if`(n=0, 1, add(b(n-j, j, 0)*binomial(n-1, j-1)*
          (j-1)!, j=1..min(n, i-1))+`if`(t=1, add(b(n-j, j, 1)*
           binomial(n-1, j-1)*(j-1)!, j=i+1..n), 0)))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[t == 0 && n > i*(i-1)/2, 0, If[n == 0, 1, Sum[b[n-j, j, 0]*Binomial[n-1, j-1]*(j-1)!, {j, 1, Min[n, i-1]}] + If[t == 1, Sum[b[n-j, j, 1]*Binomial[n-1, j-1]*(j-1)!, {j, i+1, n}], 0]]];
    a[n_] := b[n, 0, 1];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)