A286077 Number of permutations of [n] with a strongly unimodal cycle size list.
1, 1, 1, 5, 16, 80, 468, 3220, 24436, 218032, 2114244, 22759788, 267150264, 3413938512, 46668380592, 690881123856, 10841100147072, 181434400544160, 3215124610986240, 60280035304993920, 1186176116251848960, 24624604679704053120, 534223121657911528320
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
- Wikipedia, Permutation
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=0 and n>i*(i-1)/2, 0, `if`(n=0, 1, add(b(n-j, j, 0)*binomial(n-1, j-1)* (j-1)!, j=1..min(n, i-1))+`if`(t=1, add(b(n-j, j, 1)* binomial(n-1, j-1)*(j-1)!, j=i+1..n), 0))) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..30);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[t == 0 && n > i*(i-1)/2, 0, If[n == 0, 1, Sum[b[n-j, j, 0]*Binomial[n-1, j-1]*(j-1)!, {j, 1, Min[n, i-1]}] + If[t == 1, Sum[b[n-j, j, 1]*Binomial[n-1, j-1]*(j-1)!, {j, i+1, n}], 0]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)
Comments