A286095 Composite numbers n such that tau(n) (number of divisors of n) is prime and sigma(n) (sum of divisors of n) is not prime.
49, 81, 121, 169, 361, 529, 625, 841, 961, 1024, 1369, 1849, 2209, 2809, 3721, 4489, 5329, 6241, 6889, 9409, 10609, 11449, 11881, 12769, 14641, 16129, 18769, 19321, 22201, 22801, 24649, 26569, 32041, 32761, 36481, 37249, 38809, 39601, 44521, 49729, 51529, 52441, 54289
Offset: 1
Keywords
Examples
tau(49) = 3 and sigma(49) = 57 = 3 * 19.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Peter A. Lindstrom and Andy Liu, Problem 465, Crux Mathematicorum, page 188, Vol.6 , Jun. 80.
Programs
-
Maple
for n from 2 to 550000 do p(n):=tau(n); if not isprime(n) and is prime(p(n)) and not isprime(sigma(n)) then print (n,p(n),sigma(n)) else fi; od: # alternative N:= 10^5: # to get all terms <= N P:= select(isprime, [2,seq(i,i=3..isqrt(N),2)]): S:= {}: for p in P do k:= 1: do k:= nextprime(k+1)-1; if p^k > N then break fi; if not isprime((p^(k+1)-1)/(p-1)) then S:= S union {p^k} fi od od: sort(convert(S,list)); # Robert Israel, Jun 05 2017
-
Mathematica
Select[Range[10^5], Function[n, And[CompositeQ@ n, Map[PrimeQ@ DivisorSigma[#, n] &, {0, 1}] == {True, False}]]] (* Michael De Vlieger, May 24 2017 *)
-
PARI
lista(nn) = {forcomposite(n=1, nn, if (isprime(numdiv(n)) && !isprime(sigma(n)), print1(n, ", ")););} \\ Michel Marcus, May 24 2017
Comments