cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286095 Composite numbers n such that tau(n) (number of divisors of n) is prime and sigma(n) (sum of divisors of n) is not prime.

Original entry on oeis.org

49, 81, 121, 169, 361, 529, 625, 841, 961, 1024, 1369, 1849, 2209, 2809, 3721, 4489, 5329, 6241, 6889, 9409, 10609, 11449, 11881, 12769, 14641, 16129, 18769, 19321, 22201, 22801, 24649, 26569, 32041, 32761, 36481, 37249, 38809, 39601, 44521, 49729, 51529, 52441, 54289
Offset: 1

Views

Author

Bernard Schott, May 22 2017

Keywords

Comments

If sigma(n) is prime (A023194) then tau(n) is prime too. (See Crux Mathematicorum link.)
But the reverse is false; the numbers which verify tau(n) prime and sigma(n) not prime are in the sequence A275938.
All odd primes belong to the sequence A275938, but there are also in this sequence composite numbers which are all prime powers, these prime powers are here.

Examples

			tau(49) = 3 and sigma(49) = 57 = 3 * 19.
		

Crossrefs

Programs

  • Maple
    for n from 2 to 550000 do p(n):=tau(n);
    if not isprime(n) and is prime(p(n)) and not isprime(sigma(n)) then print (n,p(n),sigma(n)) else fi; od:
    # alternative
    N:= 10^5: # to get all terms <= N
    P:= select(isprime, [2,seq(i,i=3..isqrt(N),2)]):
    S:= {}:
    for p in P do
      k:= 1:
      do
        k:= nextprime(k+1)-1;
        if p^k > N then break fi;
        if not isprime((p^(k+1)-1)/(p-1)) then S:= S union {p^k} fi
      od
    od:
    sort(convert(S,list)); # Robert Israel, Jun 05 2017
  • Mathematica
    Select[Range[10^5], Function[n, And[CompositeQ@ n, Map[PrimeQ@ DivisorSigma[#, n] &, {0, 1}] == {True, False}]]] (* Michael De Vlieger, May 24 2017 *)
  • PARI
    lista(nn) = {forcomposite(n=1, nn, if (isprime(numdiv(n)) && !isprime(sigma(n)), print1(n, ", ")););} \\ Michel Marcus, May 24 2017