A286099 Square array read by antidiagonals: A(n,k) = T(n OR k, n AND k), where T(n,k) is sequence A001477 considered as a two-dimensional table, AND is bitwise-and (A004198) and OR is bitwise-or (A003986).
0, 2, 2, 5, 4, 5, 9, 9, 9, 9, 14, 13, 12, 13, 14, 20, 20, 18, 18, 20, 20, 27, 26, 27, 24, 27, 26, 27, 35, 35, 35, 35, 35, 35, 35, 35, 44, 43, 42, 43, 40, 43, 42, 43, 44, 54, 54, 52, 52, 50, 50, 52, 52, 54, 54, 65, 64, 65, 62, 61, 60, 61, 62, 65, 64, 65, 77, 77, 77, 77, 73, 73, 73, 73, 77, 77, 77, 77, 90, 89, 88, 89, 90, 85, 84, 85, 90, 89, 88, 89, 90
Offset: 0
Examples
The top left 0 .. 12 x 0 .. 12 corner of the array: 0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90 2, 4, 9, 13, 20, 26, 35, 43, 54, 64, 77, 89, 104 5, 9, 12, 18, 27, 35, 42, 52, 65, 77, 88, 102, 119 9, 13, 18, 24, 35, 43, 52, 62, 77, 89, 102, 116, 135 14, 20, 27, 35, 40, 50, 61, 73, 90, 104, 119, 135, 148 20, 26, 35, 43, 50, 60, 73, 85, 104, 118, 135, 151, 166 27, 35, 42, 52, 61, 73, 84, 98, 119, 135, 150, 168, 185 35, 43, 52, 62, 73, 85, 98, 112, 135, 151, 168, 186, 205 44, 54, 65, 77, 90, 104, 119, 135, 144, 162, 181, 201, 222 54, 64, 77, 89, 104, 118, 135, 151, 162, 180, 201, 221, 244 65, 77, 88, 102, 119, 135, 150, 168, 181, 201, 220, 242, 267 77, 89, 102, 116, 135, 151, 168, 186, 201, 221, 242, 264, 291 90, 104, 119, 135, 148, 166, 185, 205, 222, 244, 267, 291, 312
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10584; the first 145 antidiagonals of array
- Eric Weisstein's World of Mathematics, Pairing Function
Crossrefs
Programs
-
Mathematica
T[a_, b_]:=((a + b)^2 + 3a + b)/2; A[n_, k_]:=T[BitOr[n, k],BitAnd[n, k]]; Table[A[n - k, k], {n, 0, 20}, {k, 0, n}] // Flatten (* Indranil Ghosh, May 21 2017 *)
-
Python
def T(a, b): return ((a + b)**2 + 3*a + b)//2 def A(n, k): return T(n|k, n&k) for n in range(0, 21): print([A(k, n - k) for k in range(0, n + 1)]) # Indranil Ghosh, May 21 2017
-
Scheme
(define (A286099 n) (A286099bi (A002262 n) (A025581 n))) (define (A286099bi row col) (let ((a (A003986bi row col)) (b (A004198bi row col))) (/ (+ (expt (+ a b) 2) (* 3 a) b) 2))) ;; Here A003986bi and A004198bi implement bitwise-OR (A003986) and bitwise-AND (A004198).
Comments