A286106 a(1) = 0, and for n > 1, a(n) = A286105(A285735(n)) - A286105(A285734(n)).
0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Python
from sympy.ntheory.factor_ import core def issquarefree(n): return core(n) == n def a285734(n): if n==1: return 0 j=n//2 while True: if issquarefree(j) and issquarefree(n - j): return j else: j-=1 def a285735(n): return n - a285734(n) def a286105(n): return 0 if n==1 else 1 + max(a286105(a285734(n)), a286105(a285735(n))) def a286106(n): return 0 if n==1 else a286105(a285735(n)) - a286105(a285734(n)) print([a286106(n) for n in range(1, 121)]) # Indranil Ghosh, May 02 2017
-
Scheme
(define (A286106 n) (if (= 1 n) 0 (- (A286105 (A285735 n)) (A286105 (A285734 n)))))
Comments