A286110 Number of distinct hexaflexagons of length n.
1, 1, 1, 3, 3, 7, 8, 17, 21, 47, 63, 132, 205, 411, 685, 1353, 2385, 4643, 8496, 16430, 30735, 59343, 112531, 217245, 415628, 803209, 1545463, 2991191, 5778267, 11201883, 21702708, 42141575, 81830748, 159140895, 309590883, 602938098, 1174779397, 2290920127
Offset: 3
Keywords
Links
- Marshall Hampton, Constructing and Counting Hexaflexagons, arXiv:1704.07775 [math.CO], 2017.
Programs
-
Maple
A286110 := proc(n) if type(n,'odd') then add(A052307(n,ceil(n/2)+1+3*i),i=0..n/6+1) ; else add(A052307(n,ceil(n/2)+3*i),i=0..n/6) ; %-A052307(n,n/2)/2+A007148(n/2)/2-1 end if; end proc: seq(A286110(n),n=3..40) ; # R. J. Mathar, Jul 23 2017
-
Mathematica
A007148[n_] := (1/2)*(2^(n - 1) + Total[EulerPhi[2*#]*2^(n/#) & /@ Divisors[n]]/(2*n)); A052307[n_, k_] := Module[{hk = Mod[k, 2], a = 0}, If[k == 0, Return[1]]; Do[a = a + EulerPhi[d]*Binomial[n/d - 1, k/d - 1], {d, Divisors[GCD[k, n]]}]; (a/k + Binomial[Floor[(n - hk)/2], Floor[k/2]])/2]; a[n_] := Module[{s}, If[Mod[n, 2] == 1, Sum[A052307[n, Ceiling[n/2] + 1 + 3*i], {i, 0, Floor[n/6] + 1}], s = Sum[A052307[n, Ceiling[n/2] + 3*i], {i, 0, Floor[n/6] }]; s - A052307[n, n/2]/2 + A007148[n/2]/2 - 1]]; Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Nov 28 2017, after R. J. Mathar *)
-
Python
from sympy import binomial as C, totient, divisors, gcd, floor, ceiling def a007148(n): if n==1: return 1 return 2**(n - 2) + sum(totient(2*d)*2**(n//d) for d in divisors(n))//(4*n) def a052307(n, k): return 1 if n==0 else C((n//2) - k%2 * (1 - n%2), (k//2))/2 + sum(totient(d)*C(n//d, k//d) for d in divisors(gcd(n, k)))/(2*n) def a(n): if n%2: return sum([a052307(n, ceiling(n/2) + 1 + 3*i) for i in range(n//6 + 2)]) else: s=sum([a052307(n, ceiling(n/2) + 3*i) for i in range(n//6 + 1)]) return s - a052307(n, n//2)//2 + a007148(n//2)//2 - 1 print([a(n) for n in range(3, 41)]) # Indranil Ghosh, Jul 24 2017, after Maple code