cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286142 Compound filter: a(n) = T(A257993(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 2, 12, 2, 31, 2, 38, 7, 23, 2, 94, 2, 23, 16, 138, 2, 94, 2, 80, 16, 23, 2, 328, 7, 23, 29, 80, 2, 532, 2, 530, 16, 23, 16, 706, 2, 23, 16, 302, 2, 499, 2, 80, 67, 23, 2, 1228, 7, 80, 16, 80, 2, 328, 16, 302, 16, 23, 2, 1957, 2, 23, 67, 2082, 16, 499, 2, 80, 16, 467, 2, 2704, 2, 23, 67, 80, 16, 499, 2, 1178, 121, 23, 2, 1894, 16, 23, 16, 302, 2, 1957, 16
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Crossrefs

Differs from A286143 for the first time at n=24, where a(24) = 328, while A286143(24) = 355.

Programs

  • Mathematica
    Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 - Boole[n == 1] & @@ {Module[{i = 1}, While[! CoprimeQ[Prime@ i, n], i++]; i], Times @@ MapIndexed[ Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]}, {n, 92}] (* Michael De Vlieger, May 04 2017 *)
  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A257993(n) = { for(i=1,n,if(n%prime(i),return(i))); }
    A286142(n) = (1/2)*(2 + ((A257993(n)+A046523(n))^2) - A257993(n) - 3*A046523(n));
    for(n=1, 10000, write("b286142.txt", n, " ", A286142(n)));
    
  • Python
    from sympy import factorint, prime, primepi, gcd
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a053669(n):
        x=1
        while True:
            if gcd(prime(x), n) == 1: return prime(x)
            else: x+=1
    def a257993(n): return primepi(a053669(n))
    def a(n): return T(a257993(n), a046523(n)) # Indranil Ghosh, May 05 2017
  • Scheme
    (define (A286142 n) (* (/ 1 2) (+ (expt (+ (A257993 n) (A046523 n)) 2) (- (A257993 n)) (- (* 3 (A046523 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A257993(n)+A046523(n))^2) - A257993(n) - 3*A046523(n)).