cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A285729 Compound filter: a(n) = T(A032742(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 2, 2, 12, 2, 31, 2, 59, 18, 50, 2, 142, 2, 73, 50, 261, 2, 199, 2, 220, 73, 131, 2, 607, 33, 166, 129, 314, 2, 961, 2, 1097, 131, 248, 73, 1396, 2, 295, 166, 923, 2, 1246, 2, 550, 340, 401, 2, 2509, 52, 655, 248, 692, 2, 1252, 131, 1303, 295, 590, 2, 3946, 2, 661, 517, 4497, 166, 1924, 2, 1024, 401, 2051, 2, 5707, 2, 898, 655, 1214, 131, 2317, 2, 3781, 888
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {Sort[Flatten@ Apply[ TensorProduct, # /. {p_, e_} /; p > 1 :> p^Range[0, e]]][[-2]], Times @@ MapIndexed[Prime[First@ #2]^#1 &, Sort[#[[All, -1]], Greater]] - Boole[n == 1]} &@ FactorInteger@ n, {n, 81}] (* Michael De Vlieger, May 04 2017 *)
  • PARI
    A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A285729(n) = (1/2)*(2 + ((A032742(n)+A046523(n))^2) - A032742(n) - 3*A046523(n));
    for(n=1, 10000, write("b285729.txt", n, " ", A285729(n)));
    
  • Python
    from sympy import divisors, factorint
    def a032742(n): return 1 if n==1 else max(divisors(n)[:-1])
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
       f = factorint(n)
       return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return T(a032742(n), a046523(n)) # Indranil Ghosh, May 05 2017
  • Scheme
    (define (A285729 n) (* (/ 1 2) (+ (expt (+ (A032742 n) (A046523 n)) 2) (- (A032742 n)) (- (* 3 (A046523 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A032742(n)+A046523(n))^2) - A032742(n) - 3*A046523(n)).

A286142 Compound filter: a(n) = T(A257993(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 2, 12, 2, 31, 2, 38, 7, 23, 2, 94, 2, 23, 16, 138, 2, 94, 2, 80, 16, 23, 2, 328, 7, 23, 29, 80, 2, 532, 2, 530, 16, 23, 16, 706, 2, 23, 16, 302, 2, 499, 2, 80, 67, 23, 2, 1228, 7, 80, 16, 80, 2, 328, 16, 302, 16, 23, 2, 1957, 2, 23, 67, 2082, 16, 499, 2, 80, 16, 467, 2, 2704, 2, 23, 67, 80, 16, 499, 2, 1178, 121, 23, 2, 1894, 16, 23, 16, 302, 2, 1957, 16
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Crossrefs

Differs from A286143 for the first time at n=24, where a(24) = 328, while A286143(24) = 355.

Programs

  • Mathematica
    Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 - Boole[n == 1] & @@ {Module[{i = 1}, While[! CoprimeQ[Prime@ i, n], i++]; i], Times @@ MapIndexed[ Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]}, {n, 92}] (* Michael De Vlieger, May 04 2017 *)
  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A257993(n) = { for(i=1,n,if(n%prime(i),return(i))); }
    A286142(n) = (1/2)*(2 + ((A257993(n)+A046523(n))^2) - A257993(n) - 3*A046523(n));
    for(n=1, 10000, write("b286142.txt", n, " ", A286142(n)));
    
  • Python
    from sympy import factorint, prime, primepi, gcd
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a053669(n):
        x=1
        while True:
            if gcd(prime(x), n) == 1: return prime(x)
            else: x+=1
    def a257993(n): return primepi(a053669(n))
    def a(n): return T(a257993(n), a046523(n)) # Indranil Ghosh, May 05 2017
  • Scheme
    (define (A286142 n) (* (/ 1 2) (+ (expt (+ (A257993 n) (A046523 n)) 2) (- (A257993 n)) (- (* 3 (A046523 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A257993(n)+A046523(n))^2) - A257993(n) - 3*A046523(n)).

A286144 Compound filter: a(n) = T(A000010(n), A257993(n)), where T(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 2, 3, 5, 10, 8, 21, 14, 21, 14, 55, 19, 78, 27, 36, 44, 136, 34, 171, 44, 78, 65, 253, 53, 210, 90, 171, 90, 406, 63, 465, 152, 210, 152, 300, 103, 666, 189, 300, 152, 820, 103, 903, 230, 300, 275, 1081, 169, 903, 230, 528, 324, 1378, 208, 820, 324, 666, 434, 1711, 187, 1830, 495, 666, 560, 1176, 251, 2211, 560, 990, 324, 2485, 349, 2628, 702, 820, 702
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {EulerPhi@ n, Module[{i = 1}, While[! CoprimeQ[Prime@ i, n], i++]; i]}, {n, 74}] (* Michael De Vlieger, May 04 2017 *)
  • PARI
    A000010(n) = eulerphi(n);
    A257993(n) = { for(i=1,n,if(n%prime(i),return(i))); }
    A286144(n) = (2 + ((A000010(n)+A257993(n))^2) - A000010(n) - 3*A257993(n))/2;
    for(n=1, 10000, write("b286144.txt", n, " ", A286144(n)));
    
  • Python
    from sympy import prime, primepi, gcd, totient
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a053669(n):
        x=1
        while True:
            if gcd(prime(x), n) == 1: return prime(x)
            else: x+=1
    def a257993(n): return primepi(a053669(n))
    def a(n): return T(totient(n), a257993(n)) # Indranil Ghosh, May 05 2017
  • Scheme
    (define (A286144 n) (* (/ 1 2) (+ (expt (+ (A000010 n) (A257993 n)) 2) (- (A000010 n)) (- (* 3 (A257993 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A000010(n)+A257993(n))^2) - A000010(n) - 3*A257993(n)).

A286152 Compound filter: a(n) = T(A051953(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 2, 2, 12, 2, 40, 2, 59, 18, 61, 2, 179, 2, 86, 73, 261, 2, 265, 2, 265, 100, 148, 2, 757, 33, 185, 129, 367, 2, 1297, 2, 1097, 166, 271, 131, 1735, 2, 320, 205, 1105, 2, 1741, 2, 619, 517, 430, 2, 3113, 52, 850, 295, 769, 2, 1747, 205, 1517, 346, 625, 2, 5297, 2, 698, 730, 4497, 248, 2821, 2, 1117, 460, 2821, 2, 7069, 2, 941, 1070, 1315, 248, 3457, 2, 4513
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {n - EulerPhi@ n, Times @@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]] - Boole[n == 1]}, {n, 80}] (* Michael De Vlieger, May 04 2017 *)
  • PARI
    A051953(n) = (n - eulerphi(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286152(n) = (2 + ((A051953(n)+A046523(n))^2) - A051953(n) - 3*A046523(n))/2;
    for(n=1, 10000, write("b286152.txt", n, " ", A286152(n)));
    
  • Python
    from sympy import factorint, totient
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return T(n - totient(n), a046523(n)) # Indranil Ghosh, May 05 2017
  • Scheme
    (define (A286152 n) (* (/ 1 2) (+ (expt (+ (A051953 n) (A046523 n)) 2) (- (A051953 n)) (- (* 3 (A046523 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A051953(n)+A046523(n))^2) - A051953(n) - 3*A046523(n)).

A286154 Compound filter: a(n) = T(A055396(n), A000010(n)), where T(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 1, 5, 2, 18, 2, 40, 7, 23, 7, 96, 7, 142, 16, 38, 29, 238, 16, 308, 29, 80, 46, 444, 29, 234, 67, 173, 67, 676, 29, 791, 121, 212, 121, 328, 67, 1093, 154, 302, 121, 1339, 67, 1499, 191, 302, 232, 1785, 121, 994, 191, 530, 277, 2227, 154, 864, 277, 668, 379, 2718, 121, 2944, 436, 668, 497, 1228, 191, 3505, 497, 992, 277, 3936, 277, 4207, 631, 822, 631
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {If[n == 1, 0, PrimePi[ FactorInteger[n][[1, 1]] ]], EulerPhi@ n}, {n, 76}] (* Michael De Vlieger, May 04 2017 *)
  • PARI
    A000010(n) = eulerphi(n);
    A055396(n) = if(n==1, 0, primepi(factor(n)[1, 1])); \\ This function from Charles R Greathouse IV, Apr 23 2015
    A286154(n) = (2 + ((A055396(n)+A000010(n))^2) - A055396(n) - 3*A000010(n))/2;
    for(n=1, 10000, write("b286154.txt", n, " ", A286154(n)));
    
  • Python
    from sympy import primepi, isprime, primefactors, totient
    def a049084(n): return primepi(n)*(1*isprime(n))
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a(n): return T(a055396(n), totient(n)) # Indranil Ghosh, May 05 2017
  • Scheme
    (define (A286154 n) (* (/ 1 2) (+ (expt (+ (A055396 n) (A000010 n)) 2) (- (A055396 n)) (- (* 3 (A000010 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A055396(n)+A000010(n))^2) - A055396(n) - 3*A000010(n)).

A286149 Compound filter: a(n) = T(A046523(n), A109395(n)), where T(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 8, 14, 17, 34, 30, 44, 19, 51, 68, 103, 93, 72, 196, 152, 155, 103, 192, 132, 72, 126, 278, 349, 32, 159, 53, 165, 437, 976, 498, 560, 709, 237, 786, 739, 705, 282, 159, 402, 863, 660, 948, 243, 337, 384, 1130, 1273, 49, 132, 1546, 288, 1433, 349, 126, 459, 282, 567, 1772, 2761, 1893, 636, 165, 2144, 2421, 1921, 2280, 390, 2707, 2046, 2558, 2773, 2703
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {Times @@ MapIndexed[ Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]] - Boole[n == 1], Denominator[EulerPhi[n]/n]}, {n, 73}] (* Michael De Vlieger, May 04 2017 *)
  • PARI
    A109395(n) = n/gcd(n, eulerphi(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286149(n) = (1/2)*(2 + ((A046523(n)+A109395(n))^2) - A046523(n) - 3*A109395(n));
    for(n=1, 10000, write("b286149.txt", n, " ", A286149(n)));
    
  • Python
    from sympy import factorint, totient, gcd
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return T(a046523(n), n/gcd(n, totient(n))) # Indranil Ghosh, May 05 2017
  • Scheme
    (define (A286149 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A109395 n)) 2) (- (A046523 n)) (- (* 3 (A109395 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A109395(n))^2) - A046523(n) - 3*A109395(n)).

A286381 Compound filter: a(n) = P(A055881(n), A278236(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

2, 5, 16, 12, 67, 9, 16, 23, 436, 80, 1771, 18, 67, 80, 1771, 668, 16111, 48, 277, 302, 7141, 2630, 64621, 14, 16, 23, 436, 80, 1771, 31, 436, 467, 21946, 1832, 87991, 94, 1771, 1832, 87991, 16292, 793171, 328, 7141, 7262, 352381, 64982, 3173941, 25, 67, 80, 1771, 668, 16111, 94, 1771, 1832, 87991, 16292, 793171, 706, 16111, 16292, 793171, 405452, 19841851
Offset: 1

Views

Author

Antti Karttunen, May 08 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A055881(n)+A278236(n))^2) - A055881(n) - 3*A278236(n)).
Showing 1-7 of 7 results.