A286144 Compound filter: a(n) = T(A000010(n), A257993(n)), where T(n,k) is sequence A000027 used as a pairing function.
1, 2, 3, 5, 10, 8, 21, 14, 21, 14, 55, 19, 78, 27, 36, 44, 136, 34, 171, 44, 78, 65, 253, 53, 210, 90, 171, 90, 406, 63, 465, 152, 210, 152, 300, 103, 666, 189, 300, 152, 820, 103, 903, 230, 300, 275, 1081, 169, 903, 230, 528, 324, 1378, 208, 820, 324, 666, 434, 1711, 187, 1830, 495, 666, 560, 1176, 251, 2211, 560, 990, 324, 2485, 349, 2628, 702, 820, 702
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- MathWorld, Pairing Function
Crossrefs
Programs
-
Mathematica
Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {EulerPhi@ n, Module[{i = 1}, While[! CoprimeQ[Prime@ i, n], i++]; i]}, {n, 74}] (* Michael De Vlieger, May 04 2017 *)
-
PARI
A000010(n) = eulerphi(n); A257993(n) = { for(i=1,n,if(n%prime(i),return(i))); } A286144(n) = (2 + ((A000010(n)+A257993(n))^2) - A000010(n) - 3*A257993(n))/2; for(n=1, 10000, write("b286144.txt", n, " ", A286144(n)));
-
Python
from sympy import prime, primepi, gcd, totient def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a053669(n): x=1 while True: if gcd(prime(x), n) == 1: return prime(x) else: x+=1 def a257993(n): return primepi(a053669(n)) def a(n): return T(totient(n), a257993(n)) # Indranil Ghosh, May 05 2017
-
Scheme
(define (A286144 n) (* (/ 1 2) (+ (expt (+ (A000010 n) (A257993 n)) 2) (- (A000010 n)) (- (* 3 (A257993 n))) 2)))