A286145 Square array read by antidiagonals: A(n,k) = T(n XOR k, k), where T(n,k) is sequence A001477 considered as a two-dimensional table, and XOR is bitwise-xor (A003987).
0, 4, 2, 12, 1, 5, 24, 18, 13, 9, 40, 17, 3, 8, 14, 60, 50, 11, 7, 26, 20, 84, 49, 61, 6, 42, 19, 27, 112, 98, 85, 73, 62, 52, 43, 35, 144, 97, 59, 72, 10, 51, 25, 34, 44, 180, 162, 83, 71, 22, 16, 41, 33, 64, 54, 220, 161, 181, 70, 38, 15, 23, 32, 88, 53, 65, 264, 242, 221, 201, 58, 48, 39, 31, 116, 102, 89, 77, 312, 241, 179, 200, 222, 47, 21, 30, 148, 101, 63, 76, 90
Offset: 0
Examples
The top left 0 .. 12 x 0 .. 12 corner of the array: 0, 4, 12, 24, 40, 60, 84, 112, 144, 180, 220, 264, 312 2, 1, 18, 17, 50, 49, 98, 97, 162, 161, 242, 241, 338 5, 13, 3, 11, 61, 85, 59, 83, 181, 221, 179, 219, 365 9, 8, 7, 6, 73, 72, 71, 70, 201, 200, 199, 198, 393 14, 26, 42, 62, 10, 22, 38, 58, 222, 266, 314, 366, 218 20, 19, 52, 51, 16, 15, 48, 47, 244, 243, 340, 339, 240 27, 43, 25, 41, 23, 39, 21, 37, 267, 315, 265, 313, 263 35, 34, 33, 32, 31, 30, 29, 28, 291, 290, 289, 288, 287 44, 64, 88, 116, 148, 184, 224, 268, 36, 56, 80, 108, 140 54, 53, 102, 101, 166, 165, 246, 245, 46, 45, 94, 93, 158 65, 89, 63, 87, 185, 225, 183, 223, 57, 81, 55, 79, 177 77, 76, 75, 74, 205, 204, 203, 202, 69, 68, 67, 66, 197 90, 118, 150, 186, 86, 114, 146, 182, 82, 110, 142, 178, 78
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10584; the first 145 antidiagonals of array
- MathWorld, Pairing Function
Crossrefs
Programs
-
Mathematica
T[a_, b_]:=((a + b)^2 + 3a + b)/2; A[n_, k_]:=T[BitXor[n, k], k]; Table[A[k, n - k ], {n, 0, 20}, {k, 0, n}] // Flatten (* Indranil Ghosh, May 21 2017 *)
-
Python
def T(a, b): return ((a + b)**2 + 3*a + b)//2 def A(n, k): return T(n^k, k) for n in range(21): print([A(k, n - k) for k in range(n + 1)]) # Indranil Ghosh, May 21 2017
-
Scheme
(define (A286145 n) (A286145bi (A002262 n) (A025581 n))) (define (A286145bi row col) (let ((a (A003987bi row col)) (b col)) (/ (+ (expt (+ a b) 2) (* 3 a) b) 2))) ;; Where A003987bi implements bitwise-xor (A003987).
Comments