A286148 Triangle A286146 reversed.
1, 5, 2, 13, 16, 4, 25, 67, 12, 7, 41, 191, 106, 46, 11, 61, 436, 80, 31, 23, 16, 85, 862, 596, 379, 211, 92, 22, 113, 1541, 302, 781, 59, 277, 38, 29, 145, 2557, 1954, 193, 991, 631, 58, 154, 37, 181, 4006, 822, 2416, 467, 96, 212, 436, 57, 46, 221, 5996, 4852, 3829, 2927, 2146, 1486, 947, 529, 232, 56, 265, 8647, 1832, 706, 355, 3487, 142, 1771, 109, 94, 80, 67
Offset: 1
Examples
The first twelve rows of the triangle: 1, 5, 2, 13, 16, 4, 25, 67, 12, 7, 41, 191, 106, 46, 11, 61, 436, 80, 31, 23, 16, 85, 862, 596, 379, 211, 92, 22, 113, 1541, 302, 781, 59, 277, 38, 29, 145, 2557, 1954, 193, 991, 631, 58, 154, 37, 181, 4006, 822, 2416, 467, 96, 212, 436, 57, 46, 221, 5996, 4852, 3829, 2927, 2146, 1486, 947, 529, 232, 56, 265, 8647, 1832, 706, 355, 3487, 142, 1771, 109, 94, 80, 67
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10585; the first 145 rows of triangle
Programs
-
Python
from math import lcm, gcd def t(n, k): return (2 + ((gcd(n, k) + lcm(n, k))**2) - gcd(n, k) - 3*lcm(n, k))//2 for n in range(1, 21): print([t(n, k) for k in range(1, n + 1)][::-1]) # Indranil Ghosh, May 11 2017
-
Scheme
(define (A286148 n) (A286101bi (A002024 n) (A004736 n))) ;; For A286101bi see A286101.
Comments