cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A286148 Triangle A286146 reversed.

Original entry on oeis.org

1, 5, 2, 13, 16, 4, 25, 67, 12, 7, 41, 191, 106, 46, 11, 61, 436, 80, 31, 23, 16, 85, 862, 596, 379, 211, 92, 22, 113, 1541, 302, 781, 59, 277, 38, 29, 145, 2557, 1954, 193, 991, 631, 58, 154, 37, 181, 4006, 822, 2416, 467, 96, 212, 436, 57, 46, 221, 5996, 4852, 3829, 2927, 2146, 1486, 947, 529, 232, 56, 265, 8647, 1832, 706, 355, 3487, 142, 1771, 109, 94, 80, 67
Offset: 1

Views

Author

Antti Karttunen, May 06 2017

Keywords

Comments

Examples

			The first twelve rows of the triangle:
    1,
    5,    2,
   13,   16,    4,
   25,   67,   12,    7,
   41,  191,  106,   46,   11,
   61,  436,   80,   31,   23,   16,
   85,  862,  596,  379,  211,   92,   22,
  113, 1541,  302,  781,   59,  277,   38,   29,
  145, 2557, 1954,  193,  991,  631,   58,  154,  37,
  181, 4006,  822, 2416,  467,   96,  212,  436,  57,  46,
  221, 5996, 4852, 3829, 2927, 2146, 1486,  947, 529, 232, 56,
  265, 8647, 1832,  706,  355, 3487,  142, 1771, 109,  94, 80, 67
		

Crossrefs

Cf. A286101.
Cf. A286146 (same triangle reversed).

Programs

  • Python
    from math import lcm, gcd
    def t(n, k): return (2 + ((gcd(n, k) + lcm(n, k))**2) - gcd(n, k) - 3*lcm(n, k))//2
    for n in range(1, 21): print([t(n, k) for k in range(1, n + 1)][::-1]) # Indranil Ghosh, May 11 2017
  • Scheme
    (define (A286148 n) (A286101bi (A002024 n) (A004736 n))) ;; For A286101bi see A286101.
    
Showing 1-1 of 1 results.