cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286147 Square array read by antidiagonals: A(n,k) = T(n XOR k, n), where T(n,k) is sequence A001477 considered as a two-dimensional table, and XOR is bitwise-xor (A003987).

Original entry on oeis.org

0, 2, 4, 5, 1, 12, 9, 13, 18, 24, 14, 8, 3, 17, 40, 20, 26, 7, 11, 50, 60, 27, 19, 42, 6, 61, 49, 84, 35, 43, 52, 62, 73, 85, 98, 112, 44, 34, 25, 51, 10, 72, 59, 97, 144, 54, 64, 33, 41, 16, 22, 71, 83, 162, 180, 65, 53, 88, 32, 23, 15, 38, 70, 181, 161, 220, 77, 89, 102, 116, 31, 39, 48, 58, 201, 221, 242, 264, 90, 76, 63, 101, 148, 30, 21, 47, 222, 200, 179, 241, 312
Offset: 0

Views

Author

Antti Karttunen, May 03 2017

Keywords

Comments

The array is read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...

Examples

			The top left 0 .. 12 x 0 .. 12 corner of the array:
    0,   2,   5,   9,  14,  20,  27,  35,  44,  54,  65,  77,  90
    4,   1,  13,   8,  26,  19,  43,  34,  64,  53,  89,  76, 118
   12,  18,   3,   7,  42,  52,  25,  33,  88, 102,  63,  75, 150
   24,  17,  11,   6,  62,  51,  41,  32, 116, 101,  87,  74, 186
   40,  50,  61,  73,  10,  16,  23,  31, 148, 166, 185, 205,  86
   60,  49,  85,  72,  22,  15,  39,  30, 184, 165, 225, 204, 114
   84,  98,  59,  71,  38,  48,  21,  29, 224, 246, 183, 203, 146
  112,  97,  83,  70,  58,  47,  37,  28, 268, 245, 223, 202, 182
  144, 162, 181, 201, 222, 244, 267, 291,  36,  46,  57,  69,  82
  180, 161, 221, 200, 266, 243, 315, 290,  56,  45,  81,  68, 110
  220, 242, 179, 199, 314, 340, 265, 289,  80,  94,  55,  67, 142
  264, 241, 219, 198, 366, 339, 313, 288, 108,  93,  79,  66, 178
  312, 338, 365, 393, 218, 240, 263, 287, 140, 158, 177, 197,  78
		

Crossrefs

Transpose: A286145.
Cf. A000096 (row 0), A046092 (column 0), A000217 (main diagonal).

Programs

  • Mathematica
    T[a_, b_]:=((a + b)^2 + 3a + b)/2; A[n_, k_]:=T[BitXor[n, k], k]; Table[A[n - k, k], {n, 0, 20}, {k, 0, n}] // Flatten (* Indranil Ghosh, May 21 2017 *)
  • Python
    def T(a, b): return ((a + b)**2 + 3*a + b)//2
    def A(n, k): return T(n^k, k)
    for n in range(21): print([A(n - k, k) for k in range(n + 1)]) # Indranil Ghosh, May 21 2017
  • Scheme
    (define (A286147 n) (A286147bi (A002262 n) (A025581 n)))
    (define (A286147bi row col) (let ((a (A003987bi row col)) (b row)) (/ (+ (expt (+ a b) 2) (* 3 a) b) 2))) ;; Where A003987bi implements bitwise-xor (A003987).
    

Formula

A(n,k) = T(A003987(n,k), n), where T(n,k) is sequence A001477 considered as a two-dimensional table, that is, as a pairing function from [0, 1, 2, 3, ...] x [0, 1, 2, 3, ...] to [0, 1, 2, 3, ...].