A286147 Square array read by antidiagonals: A(n,k) = T(n XOR k, n), where T(n,k) is sequence A001477 considered as a two-dimensional table, and XOR is bitwise-xor (A003987).
0, 2, 4, 5, 1, 12, 9, 13, 18, 24, 14, 8, 3, 17, 40, 20, 26, 7, 11, 50, 60, 27, 19, 42, 6, 61, 49, 84, 35, 43, 52, 62, 73, 85, 98, 112, 44, 34, 25, 51, 10, 72, 59, 97, 144, 54, 64, 33, 41, 16, 22, 71, 83, 162, 180, 65, 53, 88, 32, 23, 15, 38, 70, 181, 161, 220, 77, 89, 102, 116, 31, 39, 48, 58, 201, 221, 242, 264, 90, 76, 63, 101, 148, 30, 21, 47, 222, 200, 179, 241, 312
Offset: 0
Examples
The top left 0 .. 12 x 0 .. 12 corner of the array: 0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90 4, 1, 13, 8, 26, 19, 43, 34, 64, 53, 89, 76, 118 12, 18, 3, 7, 42, 52, 25, 33, 88, 102, 63, 75, 150 24, 17, 11, 6, 62, 51, 41, 32, 116, 101, 87, 74, 186 40, 50, 61, 73, 10, 16, 23, 31, 148, 166, 185, 205, 86 60, 49, 85, 72, 22, 15, 39, 30, 184, 165, 225, 204, 114 84, 98, 59, 71, 38, 48, 21, 29, 224, 246, 183, 203, 146 112, 97, 83, 70, 58, 47, 37, 28, 268, 245, 223, 202, 182 144, 162, 181, 201, 222, 244, 267, 291, 36, 46, 57, 69, 82 180, 161, 221, 200, 266, 243, 315, 290, 56, 45, 81, 68, 110 220, 242, 179, 199, 314, 340, 265, 289, 80, 94, 55, 67, 142 264, 241, 219, 198, 366, 339, 313, 288, 108, 93, 79, 66, 178 312, 338, 365, 393, 218, 240, 263, 287, 140, 158, 177, 197, 78
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10584; the first 145 antidiagonals of array
- MathWorld, Pairing Function
Crossrefs
Programs
-
Mathematica
T[a_, b_]:=((a + b)^2 + 3a + b)/2; A[n_, k_]:=T[BitXor[n, k], k]; Table[A[n - k, k], {n, 0, 20}, {k, 0, n}] // Flatten (* Indranil Ghosh, May 21 2017 *)
-
Python
def T(a, b): return ((a + b)**2 + 3*a + b)//2 def A(n, k): return T(n^k, k) for n in range(21): print([A(n - k, k) for k in range(n + 1)]) # Indranil Ghosh, May 21 2017
-
Scheme
(define (A286147 n) (A286147bi (A002262 n) (A025581 n))) (define (A286147bi row col) (let ((a (A003987bi row col)) (b row)) (/ (+ (expt (+ a b) 2) (* 3 a) b) 2))) ;; Where A003987bi implements bitwise-xor (A003987).
Comments