A286152 Compound filter: a(n) = T(A051953(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function.
0, 2, 2, 12, 2, 40, 2, 59, 18, 61, 2, 179, 2, 86, 73, 261, 2, 265, 2, 265, 100, 148, 2, 757, 33, 185, 129, 367, 2, 1297, 2, 1097, 166, 271, 131, 1735, 2, 320, 205, 1105, 2, 1741, 2, 619, 517, 430, 2, 3113, 52, 850, 295, 769, 2, 1747, 205, 1517, 346, 625, 2, 5297, 2, 698, 730, 4497, 248, 2821, 2, 1117, 460, 2821, 2, 7069, 2, 941, 1070, 1315, 248, 3457, 2, 4513
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- MathWorld, Pairing Function
Crossrefs
Programs
-
Mathematica
Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {n - EulerPhi@ n, Times @@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]] - Boole[n == 1]}, {n, 80}] (* Michael De Vlieger, May 04 2017 *)
-
PARI
A051953(n) = (n - eulerphi(n)); A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A286152(n) = (2 + ((A051953(n)+A046523(n))^2) - A051953(n) - 3*A046523(n))/2; for(n=1, 10000, write("b286152.txt", n, " ", A286152(n)));
-
Python
from sympy import factorint, totient def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def a(n): return T(n - totient(n), a046523(n)) # Indranil Ghosh, May 05 2017
-
Scheme
(define (A286152 n) (* (/ 1 2) (+ (expt (+ (A051953 n) (A046523 n)) 2) (- (A051953 n)) (- (* 3 (A046523 n))) 2)))