cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286153 Square array read by descending antidiagonals A(1,1), A(1,2), A(2,1), ...: If n > k, A(n,k) = T(n XOR k, k), and otherwise A(n,k) = T(n, n XOR k), where T(n,k) is sequence A001477 considered as a two-dimensional table, and XOR is bitwise-xor (A003987).

Original entry on oeis.org

2, 11, 13, 7, 5, 8, 22, 8, 7, 26, 16, 38, 9, 42, 19, 37, 47, 58, 62, 52, 43, 29, 23, 48, 14, 51, 25, 34, 56, 30, 39, 19, 16, 41, 33, 64, 46, 80, 31, 25, 20, 23, 32, 88, 53, 79, 93, 108, 32, 41, 39, 31, 116, 102, 89, 67, 57, 94, 140, 33, 27, 30, 148, 101, 63, 76, 106, 68, 81, 157, 176, 34, 29, 184, 166, 87, 75, 118, 92, 138, 69, 175, 158, 216, 35, 224, 165, 185, 74, 150, 103
Offset: 1

Views

Author

Antti Karttunen, May 03 2017

Keywords

Examples

			The top left 1 .. 12 x 1 .. 12 corner of the array:
    2,  11,   7,  22,  16,  37,  29,  56,  46,  79,  67, 106
   13,   5,   8,  38,  47,  23,  30,  80,  93,  57,  68, 138
    8,   7,   9,  58,  48,  39,  31, 108,  94,  81,  69, 174
   26,  42,  62,  14,  19,  25,  32, 140, 157, 175, 194,  82
   19,  52,  51,  16,  20,  41,  33, 176, 158, 215, 195, 110
   43,  25,  41,  23,  39,  27,  34, 216, 237, 177, 196, 142
   34,  33,  32,  31,  30,  29,  35, 260, 238, 217, 197, 178
   64,  88, 116, 148, 184, 224, 268,  44,  53,  63,  74,  86
   53, 102, 101, 166, 165, 246, 245,  46,  54,  87,  75, 114
   89,  63,  87, 185, 225, 183, 223,  57,  81,  65,  76, 146
   76,  75,  74, 205, 204, 203, 202,  69,  68,  67,  77, 182
  118, 150, 186,  86, 114, 146, 182,  82, 110, 142, 178,  90
		

Crossrefs

Array A286151 without its topmost row and leftmost column.

Programs

  • Mathematica
    T[a_, b_]:=((a + b)^2 + 3a + b)/2; A[n_, k_]:=If[n>k,T[BitXor[n, k], k], T[n, BitXor[n, k]]]; Table[A[k, n - k + 1], {n, 20}, {k, n}] // Flatten (* Indranil Ghosh, May 21 2017 *)
  • Python
    def T(a, b): return ((a + b)**2 + 3*a + b)//2
    def A(n, k): return T(n^k, k) if n>k else T(n, n^k)
    for n in range(1, 21): print([A(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, May 21 2017
  • Scheme
    (define (A286153 n) (A286151bi (A002260 n) (A004736 n))) ;; For A286151bi see A286151.
    

Formula

A(n,k) = A286151(n,k), for n >= 1, k >= 1.
If n > k, A(n,k) = T(A003987(n,k),k), otherwise A(n,k) = T(n,A003987(n,k)), where T(n,k) is sequence A001477 considered as a two-dimensional table, and XOR is bitwise-xor (A003987).