A286153 Square array read by descending antidiagonals A(1,1), A(1,2), A(2,1), ...: If n > k, A(n,k) = T(n XOR k, k), and otherwise A(n,k) = T(n, n XOR k), where T(n,k) is sequence A001477 considered as a two-dimensional table, and XOR is bitwise-xor (A003987).
2, 11, 13, 7, 5, 8, 22, 8, 7, 26, 16, 38, 9, 42, 19, 37, 47, 58, 62, 52, 43, 29, 23, 48, 14, 51, 25, 34, 56, 30, 39, 19, 16, 41, 33, 64, 46, 80, 31, 25, 20, 23, 32, 88, 53, 79, 93, 108, 32, 41, 39, 31, 116, 102, 89, 67, 57, 94, 140, 33, 27, 30, 148, 101, 63, 76, 106, 68, 81, 157, 176, 34, 29, 184, 166, 87, 75, 118, 92, 138, 69, 175, 158, 216, 35, 224, 165, 185, 74, 150, 103
Offset: 1
Examples
The top left 1 .. 12 x 1 .. 12 corner of the array: 2, 11, 7, 22, 16, 37, 29, 56, 46, 79, 67, 106 13, 5, 8, 38, 47, 23, 30, 80, 93, 57, 68, 138 8, 7, 9, 58, 48, 39, 31, 108, 94, 81, 69, 174 26, 42, 62, 14, 19, 25, 32, 140, 157, 175, 194, 82 19, 52, 51, 16, 20, 41, 33, 176, 158, 215, 195, 110 43, 25, 41, 23, 39, 27, 34, 216, 237, 177, 196, 142 34, 33, 32, 31, 30, 29, 35, 260, 238, 217, 197, 178 64, 88, 116, 148, 184, 224, 268, 44, 53, 63, 74, 86 53, 102, 101, 166, 165, 246, 245, 46, 54, 87, 75, 114 89, 63, 87, 185, 225, 183, 223, 57, 81, 65, 76, 146 76, 75, 74, 205, 204, 203, 202, 69, 68, 67, 77, 182 118, 150, 186, 86, 114, 146, 182, 82, 110, 142, 178, 90
Links
Programs
-
Mathematica
T[a_, b_]:=((a + b)^2 + 3a + b)/2; A[n_, k_]:=If[n>k,T[BitXor[n, k], k], T[n, BitXor[n, k]]]; Table[A[k, n - k + 1], {n, 20}, {k, n}] // Flatten (* Indranil Ghosh, May 21 2017 *)
-
Python
def T(a, b): return ((a + b)**2 + 3*a + b)//2 def A(n, k): return T(n^k, k) if n>k else T(n, n^k) for n in range(1, 21): print([A(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, May 21 2017
-
Scheme
(define (A286153 n) (A286151bi (A002260 n) (A004736 n))) ;; For A286151bi see A286151.