A286154 Compound filter: a(n) = T(A055396(n), A000010(n)), where T(n,k) is sequence A000027 used as a pairing function.
0, 1, 5, 2, 18, 2, 40, 7, 23, 7, 96, 7, 142, 16, 38, 29, 238, 16, 308, 29, 80, 46, 444, 29, 234, 67, 173, 67, 676, 29, 791, 121, 212, 121, 328, 67, 1093, 154, 302, 121, 1339, 67, 1499, 191, 302, 232, 1785, 121, 994, 191, 530, 277, 2227, 154, 864, 277, 668, 379, 2718, 121, 2944, 436, 668, 497, 1228, 191, 3505, 497, 992, 277, 3936, 277, 4207, 631, 822, 631
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- MathWorld, Pairing Function
Crossrefs
Programs
-
Mathematica
Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {If[n == 1, 0, PrimePi[ FactorInteger[n][[1, 1]] ]], EulerPhi@ n}, {n, 76}] (* Michael De Vlieger, May 04 2017 *)
-
PARI
A000010(n) = eulerphi(n); A055396(n) = if(n==1, 0, primepi(factor(n)[1, 1])); \\ This function from Charles R Greathouse IV, Apr 23 2015 A286154(n) = (2 + ((A055396(n)+A000010(n))^2) - A055396(n) - 3*A000010(n))/2; for(n=1, 10000, write("b286154.txt", n, " ", A286154(n)));
-
Python
from sympy import primepi, isprime, primefactors, totient def a049084(n): return primepi(n)*(1*isprime(n)) def a055396(n): return 0 if n==1 else a049084(min(primefactors(n))) def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a(n): return T(a055396(n), totient(n)) # Indranil Ghosh, May 05 2017
-
Scheme
(define (A286154 n) (* (/ 1 2) (+ (expt (+ (A055396 n) (A000010 n)) 2) (- (A055396 n)) (- (* 3 (A000010 n))) 2)))