A286160 Compound filter: a(n) = T(A000010(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function.
1, 2, 5, 12, 14, 23, 27, 59, 42, 40, 65, 109, 90, 61, 86, 261, 152, 142, 189, 179, 148, 115, 275, 473, 273, 148, 318, 265, 434, 674, 495, 1097, 320, 226, 430, 1093, 702, 271, 430, 757, 860, 832, 945, 485, 619, 373, 1127, 1969, 1032, 485, 698, 619, 1430, 838, 1030, 1105, 856, 556, 1769, 2791, 1890, 625, 1117, 4497, 1426, 1196, 2277, 935, 1220
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- MathWorld, Pairing Function
Crossrefs
Programs
-
PARI
A000010(n) = eulerphi(n); A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A286160(n) = (2 + ((A000010(n)+A046523(n))^2) - A000010(n) - 3*A046523(n))/2; for(n=1, 10000, write("b286160.txt", n, " ", A286160(n)));
-
Python
from sympy import factorint, totient def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def a(n): return T(totient(n), a046523(n)) # Indranil Ghosh, May 06 2017
-
Scheme
(define (A286160 n) (* (/ 1 2) (+ (expt (+ (A000010 n) (A046523 n)) 2) (- (A000010 n)) (- (* 3 (A046523 n))) 2)))