A286164 Compound filter: a(n) = T(A055396(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function.
0, 2, 5, 7, 9, 16, 14, 29, 12, 16, 20, 67, 27, 16, 23, 121, 35, 67, 44, 67, 23, 16, 54, 277, 18, 16, 38, 67, 65, 436, 77, 497, 23, 16, 31, 631, 90, 16, 23, 277, 104, 436, 119, 67, 80, 16, 135, 1129, 25, 67, 23, 67, 152, 277, 31, 277, 23, 16, 170, 1771, 189, 16, 80, 2017, 31, 436, 209, 67, 23, 436, 230, 2557, 252, 16, 80, 67, 40, 436, 275, 1129, 138, 16, 299
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- MathWorld, Pairing Function
Programs
-
PARI
A001511(n) = (1+valuation(n,2)); A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A055396(n) = if(n==1, 0, primepi(factor(n)[1, 1])); \\ This function from Charles R Greathouse IV, Apr 23 2015 A286164(n) = (2 + ((A055396(n)+A046523(n))^2) - A055396(n) - 3*A046523(n))/2; for(n=1, 10000, write("b286164.txt", n, " ", A286164(n)));
-
Python
from sympy import primepi, isprime, primefactors, factorint def a049084(n): return primepi(n)*(1*isprime(n)) def a055396(n): return 0 if n==1 else a049084(min(primefactors(n))) def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def a(n): return T(a055396(n), a046523(n)) # Indranil Ghosh, May 05 2017
-
Scheme
(define (A286164 n) (* (/ 1 2) (+ (expt (+ (A055396 n) (A046523 n)) 2) (- (A055396 n)) (- (* 3 (A046523 n))) 2)))