A286189 Number of connected induced (non-null) subgraphs of the n X n rook graph.
1, 13, 397, 55933, 31450861, 67253507293, 559182556492477, 18408476382988290493, 2416307646576708948065581, 1267404418454077249779938768413, 2658301080374793666228695738368407037, 22300360304310794054520197736231374212892413
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- Eric Weisstein's World of Mathematics, Rook Graph
- Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph
Crossrefs
Programs
-
Mathematica
{1} ~ Join ~ Table[g = GraphData[{"Rook", {n,n}}]; -1 + ParallelSum[ Boole@ ConnectedGraphQ@ Subgraph[g, s], {s, Subsets@ Range[n^2]}], {n, 2, 4}] (* Second program: *) (* b = A183109, T = A262307 *) b[n_, m_] := Sum[(-1)^j*Binomial[m, j]*(2^(m - j) - 1)^n, {j, 0, m}]; T[m_, n_] := T[m, n] = b[m, n] - Sum[T[i, j]*b[m - i, n - j] Binomial[m - 1, i - 1]*Binomial[n, j], {i, 1, m - 1}, {j, 1, n - 1}]; a[n_] := Sum[Binomial[n, i]*Binomial[n, j]*T[i, j], {i, 1, n}, {j, 1, n}]; Array[a, 12] (* Jean-François Alcover, Oct 11 2017, after Andrew Howroyd *)
-
PARI
G(N)={my(S=matrix(N,N), T=matrix(N,N), U=matrix(N,N)); \\ S is A183109, T is A262307, U is mxn variant of this sequence. for(m=1,N,for(n=1,N, S[m,n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n); T[m,n]=S[m,n]-sum(i=1, m-1, sum(j=1, n-1, T[i,j]*S[m-i,n-j]*binomial(m-1,i-1)*binomial(n,j))); U[m,n]=sum(i=1,m,sum(j=1,n,binomial(m,i)*binomial(n,j)*T[i,j])) ));U} a(n)=G(n)[n,n]; \\ Andrew Howroyd, May 22 2017
Formula
a(n) = Sum_{i=1..n} Sum_{j=1..n} binomial(n,i)*binomial(n,j)*A262307(i,j). - Andrew Howroyd, May 22 2017
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Oct 12 2017
Extensions
Terms a(7) and beyond from Andrew Howroyd, May 22 2017