A286209 Number of n X 1 0..1 arrays with the number of 1's king-move adjacent to some 0 two less than the number of 0's adjacent to some 1.
0, 0, 0, 0, 0, 0, 1, 3, 10, 24, 60, 134, 304, 656, 1420, 2996, 6312, 13112, 27167, 55825, 114412, 233282, 474563, 962159, 1947098, 3931288, 7925708, 15952866, 32072580, 64404708, 129213082, 259009006, 518818124, 1038549912, 2077775396, 4154785904, 8304424080
Offset: 0
Keywords
Examples
All solutions for n=7 ..0. .0. .0 ..1. .0. .1 ..0. .1. .0 ..0. .0. .0 ..0. .0. .1 ..1. .1. .0 ..0. .0. .0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3327 (terms n = 1..210 from R. H. Hardin)
Programs
-
Maple
b:= proc(n, t, h, c) option remember; `if`(abs(c-2)>n, 0, `if`(n=0, 1, b(n-1, [1, 3, 1][t], 2, c-`if`(h=3, 1, 0))+ b(n-1, 2, [1, 3, 1][h], c+`if`(t=3, 1, 0)))) end: a:= n-> b(n, 1$2, 0): seq(a(n), n=0..40); # Alois P. Heinz, Apr 29 2019
-
Mathematica
b[n_, t_, h_, c_] := b[n, t, h, c] = If[Abs[c - 2] > n, 0, If[n == 0, 1, b[n - 1, {1, 3, 1}[[t]], 2, c - If[h == 3, 1, 0]] + b[n - 1, 2, {1, 3, 1}[[h]], c + If[t == 3, 1, 0]]]]; a[n_] := b[n, 1, 1, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 27 2022, after Alois P. Heinz *)