cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286232 Sum T(n,k) of the entries in the k-th last blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 5, 1, 19, 10, 1, 75, 57, 17, 1, 323, 285, 145, 26, 1, 1512, 1421, 975, 317, 37, 1, 7630, 7395, 5999, 2865, 616, 50, 1, 41245, 40726, 36183, 22411, 7315, 1094, 65, 1, 237573, 237759, 221689, 163488, 72581, 16630, 1812, 82, 1, 1451359, 1468162, 1405001, 1160764, 649723, 206249, 34425, 2840, 101, 1
Offset: 1

Views

Author

Alois P. Heinz, May 04 2017

Keywords

Examples

			T(3,2) = 10 because the sum of the entries in the second last blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+3+4+1+2 = 10.
Triangle T(n,k) begins:
      1;
      5,     1;
     19,    10,     1;
     75,    57,    17,     1;
    323,   285,   145,    26,    1;
   1512,  1421,   975,   317,   37,    1;
   7630,  7395,  5999,  2865,  616,   50,  1;
  41245, 40726, 36183, 22411, 7315, 1094, 65, 1;
  ...
		

Crossrefs

Column k=1 gives A285424.
Main diagonal and first lower diagonal give: A000012, A002522.
Row sums give A000110(n) * A000217(n) = A105488(n+3).

Programs

  • Mathematica
    app[P_, n_] := Module[{P0}, Table[P0 = Append[P, {}]; AppendTo[P0[[i]], n]; If[Last[P0] == {}, Most[P0], P0], {i, 1, Length[P]+1}]];
    setPartitions[n_] := setPartitions[n] = If[n == 1, {{{1}}}, Flatten[app[#, n]& /@ setPartitions[n-1], 1]];
    T[n_, k_] := Select[setPartitions[n], Length[#] >= k&][[All, -k]] // Flatten // Total;
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 21 2021 *)