A286240 Compound filter: a(n) = P(A278222(n), A278222(1+n)), where P(n,k) is sequence A000027 used as a pairing function.
2, 5, 12, 14, 23, 42, 59, 44, 23, 61, 142, 117, 109, 183, 261, 152, 23, 61, 142, 148, 601, 850, 607, 375, 109, 265, 1093, 939, 473, 765, 1097, 560, 23, 61, 142, 148, 601, 850, 607, 430, 601, 1741, 3946, 2545, 2497, 3463, 2509, 1323, 109, 265, 1093, 1117, 2497, 4525, 5707, 3153, 473, 1105, 4489, 3813, 1969, 3129, 4497, 2144, 23, 61, 142, 148, 601, 850, 607, 430, 601, 1741
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16383
- Eric Weisstein's World of Mathematics, Pairing Function
Crossrefs
Programs
-
PARI
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A278222(n) = A046523(A005940(1+n)); A286240(n) = (2 + ((A278222(n)+A278222(1+n))^2) - A278222(n) - 3*A278222(1+n))/2; for(n=0, 16383, write("b286240.txt", n, " ", A286240(n)));
-
Python
from sympy import prime, factorint import math def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def A(n): return n - 2**int(math.floor(math.log(n, 2))) def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n)) def a005940(n): return b(n - 1) def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def a278222(n): return a046523(a005940(n + 1)) def a(n): return T(a278222(n), a278222(n + 1)) # Indranil Ghosh, May 07 2017
-
Scheme
(define (A286240 n) (* (/ 1 2) (+ (expt (+ (A278222 n) (A278222 (+ 1 n))) 2) (- (A278222 n)) (- (* 3 (A278222 (+ 1 n)))) 2)))