A286242 Compound filter: a(n) = P(A278222(n), A278219(n)), where P(n,k) is sequence A000027 used as a pairing function.
1, 5, 12, 14, 12, 84, 40, 44, 12, 142, 216, 183, 40, 265, 86, 152, 12, 142, 826, 265, 216, 1860, 607, 489, 40, 832, 607, 1117, 86, 619, 226, 560, 12, 142, 826, 265, 826, 5080, 2497, 619, 216, 2956, 4308, 4155, 607, 8575, 1105, 1533, 40, 832, 2497, 2116, 607, 5731, 4501, 3475, 86, 1402, 1105, 3475, 226, 1759, 698, 2144, 12, 142, 826, 265, 826, 5080, 2497, 619, 826
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16383
- MathWorld, Pairing Function
Programs
-
PARI
A003188(n) = bitxor(n, n>>1); A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A278222(n) = A046523(A005940(1+n)); A278219(n) = A278222(A003188(n)); A286242(n) = (2 + ((A278222(n)+A278219(n))^2) - A278222(n) - 3*A278219(n))/2; for(n=0, 16383, write("b286242.txt", n, " ", A286242(n)));
-
Python
from sympy import prime, factorint import math def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def A(n): return n - 2**int(math.floor(math.log(n, 2))) def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n)) def a005940(n): return b(n - 1) def P(n): f=factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def a003188(n): return n^(n>>1) def a243353(n): return a005940(1 + a003188(n)) def a278219(n): return a046523(a243353(n)) def a278222(n): return a046523(a005940(n + 1)) def a(n): return T(a278222(n), a278219(n)) # Indranil Ghosh, May 07 2017
-
Scheme
(define (A286242 n) (* (/ 1 2) (+ (expt (+ (A278222 n) (A278219 n)) 2) (- (A278222 n)) (- (* 3 (A278219 n))) 2)))