cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286242 Compound filter: a(n) = P(A278222(n), A278219(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 12, 14, 12, 84, 40, 44, 12, 142, 216, 183, 40, 265, 86, 152, 12, 142, 826, 265, 216, 1860, 607, 489, 40, 832, 607, 1117, 86, 619, 226, 560, 12, 142, 826, 265, 826, 5080, 2497, 619, 216, 2956, 4308, 4155, 607, 8575, 1105, 1533, 40, 832, 2497, 2116, 607, 5731, 4501, 3475, 86, 1402, 1105, 3475, 226, 1759, 698, 2144, 12, 142, 826, 265, 826, 5080, 2497, 619, 826
Offset: 0

Views

Author

Antti Karttunen, May 07 2017

Keywords

Crossrefs

Programs

  • PARI
    A003188(n) = bitxor(n, n>>1);
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A278222(n) = A046523(A005940(1+n));
    A278219(n) = A278222(A003188(n));
    A286242(n) = (2 + ((A278222(n)+A278219(n))^2) - A278222(n) - 3*A278219(n))/2;
    for(n=0, 16383, write("b286242.txt", n, " ", A286242(n)));
    
  • Python
    from sympy import prime, factorint
    import math
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a005940(n): return b(n - 1)
    def P(n):
        f=factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a003188(n): return n^(n>>1)
    def a243353(n): return a005940(1 + a003188(n))
    def a278219(n): return a046523(a243353(n))
    def a278222(n): return a046523(a005940(n + 1))
    def a(n): return T(a278222(n), a278219(n)) # Indranil Ghosh, May 07 2017
  • Scheme
    (define (A286242 n) (* (/ 1 2) (+ (expt (+ (A278222 n) (A278219 n)) 2) (- (A278222 n)) (- (* 3 (A278219 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A278222(n)+A278219(n))^2) - A278222(n) - 3*A278219(n)).
a(n) = (1/2)*(2 + ((A278222(n)+A278222(A003188(n)))^2) - A278222(n) - 3*A278222(A003188(n))).