A286249 Triangular table: T(n,k) = 0 if k does not divide n, otherwise T(n,k) = P(A046523(n/k), k), where P is sequence A000027 used as a pairing function N x N -> N. Table is read by rows as T(1,1), T(2,1), T(2,2), etc.
1, 3, 2, 3, 0, 4, 10, 5, 0, 7, 3, 0, 0, 0, 11, 21, 5, 8, 0, 0, 16, 3, 0, 0, 0, 0, 0, 22, 36, 14, 0, 12, 0, 0, 0, 29, 10, 0, 8, 0, 0, 0, 0, 0, 37, 21, 5, 0, 0, 17, 0, 0, 0, 0, 46, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 78, 27, 19, 12, 0, 23, 0, 0, 0, 0, 0, 67, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 79, 21, 5, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 92, 21, 0, 8, 0, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 106
Offset: 1
Examples
The first fifteen rows of triangle: 1, 3, 2, 3, 0, 4, 10, 5, 0, 7, 3, 0, 0, 0, 11, 21, 5, 8, 0, 0, 16, 3, 0, 0, 0, 0, 0, 22, 36, 14, 0, 12, 0, 0, 0, 29, 10, 0, 8, 0, 0, 0, 0, 0, 37, 21, 5, 0, 0, 17, 0, 0, 0, 0, 46, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 78, 27, 19, 12, 0, 23, 0, 0, 0, 0, 0, 67, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 79, 21, 5, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 92, 21, 0, 8, 0, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 106 ------------------------------------------------------------- Note how triangle A286247 contains on each row the same numbers in the same "divisibility-allotted" positions, but in reverse order.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10585; the first 145 rows of triangle/antidiagonals of array
- Eric Weisstein's World of Mathematics, Pairing Function
Crossrefs
Programs
-
Python
from sympy import factorint import math def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2 def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def t(n, k): return 0 if n%k!=0 else T(a046523(n//k), k) for n in range(1, 21): print([t(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, May 08 2017
-
Scheme
(define (A286249 n) (A286249tr (A002024 n) (A002260 n))) (define (A286249tr n k) (if (not (zero? (modulo n k))) 0 (let ((a (A046523 (/ n k))) (b k)) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2)))))
Comments