cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286250 Filter-sequence: a(n) = A278223(A064216(n)) = A046523((2*A064216(n))-1).

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 6, 2, 4, 6, 2, 2, 2, 6, 12, 6, 8, 2, 2, 2, 2, 16, 2, 6, 4, 6, 6, 2, 2, 30, 12, 6, 6, 4, 12, 6, 6, 6, 6, 6, 2, 2, 6, 6, 30, 2, 6, 2, 6, 6, 2, 6, 2, 6, 6, 6, 6, 2, 6, 6, 2, 12, 2, 36, 2, 6, 4, 2, 12, 30, 12, 12, 2, 12, 2, 24, 2, 2, 6, 6, 24, 2, 2, 12, 2, 24, 12, 2, 2, 30, 30, 6, 6, 2, 2, 4, 6, 2, 30, 6, 32, 2, 6, 2, 6, 2, 6, 12, 4, 2, 30, 2, 2
Offset: 1

Views

Author

Antti Karttunen, May 07 2017

Keywords

Crossrefs

Programs

  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A064216(n) = A064989((2*n)-1);
    A286250(n) = A046523(-1+(2*A064216(n)));
    for(n=1, 10000, write("b286250.txt", n, " ", A286250(n)));
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a064216(n):
        f=factorint(2*n - 1)
        return 1 if n==1 else reduce(mul, [prevprime(i)**f[i] for i in f])
    def a(n): return a046523((2*a064216(n)) - 1) # Indranil Ghosh, May 13 2017
  • Scheme
    (define (A286250 n) (A046523 (+ -1 (* 2 (A064216 n)))))
    

Formula

a(n) = A046523(A245448(n)) = A278223(A064216(n)) = A046523((2*A064216(n))-1).