A286254 Compound filter: a(n) = P(A001511(n), A055396(1+n)), where P(n,k) is sequence A000027 used as a pairing function.
1, 5, 1, 13, 1, 12, 1, 14, 1, 17, 1, 31, 1, 5, 1, 60, 1, 38, 1, 9, 1, 47, 1, 19, 1, 5, 1, 69, 1, 68, 1, 27, 1, 8, 1, 94, 1, 5, 1, 124, 1, 107, 1, 9, 1, 122, 1, 33, 1, 5, 1, 156, 1, 8, 1, 14, 1, 155, 1, 193, 1, 5, 1, 43, 1, 192, 1, 9, 1, 212, 1, 280, 1, 5, 1, 18, 1, 255, 1, 20, 1, 278, 1, 13, 1, 5, 1, 355, 1, 12, 1, 9, 1, 8, 1, 441, 1, 5, 1, 381, 1, 380, 1, 14
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- MathWorld, Pairing Function
Programs
-
PARI
A001511(n) = (1+valuation(n,2)); A055396(n) = if(n==1, 0, primepi(factor(n)[1, 1])); \\ This function from Charles R Greathouse IV, Apr 23 2015 A286254(n) = (2 + ((A001511(n)+A055396(1+n))^2) - A001511(n) - 3*A055396(1+n))/2; for(n=1, 10000, write("b286254.txt", n, " ", A286254(n)));
-
Python
from sympy import primepi, isprime, primefactors def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a049084(n): return primepi(n)*(1*isprime(n)) def a055396(n): return 0 if n==1 else a049084(min(primefactors(n))) def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1") def a(n): return T(a001511(n), a055396(n + 1)) # Indranil Ghosh, May 07 2017
-
Scheme
(define (A286254 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A055396 (+ 1 n))) 2) (- (A001511 n)) (- (* 3 (A055396 (+ 1 n)))) 2)))