A286259 Compound filter: a(n) = P(A001511(n), A049820(n)), where P(n,k) is sequence A000027 used as a pairing function.
1, 2, 1, 6, 4, 5, 11, 25, 16, 23, 37, 31, 56, 57, 56, 110, 106, 80, 137, 123, 137, 173, 211, 175, 232, 255, 254, 279, 352, 255, 407, 471, 407, 467, 466, 409, 596, 597, 596, 599, 742, 597, 821, 783, 742, 905, 991, 866, 1036, 992, 1082, 1131, 1276, 1083, 1276, 1279, 1379, 1487, 1597, 1228, 1712, 1713, 1597, 1960, 1831, 1713, 2081, 2019, 2081, 1955, 2347, 1957
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- MathWorld, Pairing Function
Programs
-
PARI
A001511(n) = (1+valuation(n,2)); A049820(n) = (n-numdiv(n)); A286259(n) = (2 + ((A001511(n)+A049820(n))^2) - A001511(n) - 3*A049820(n))/2; for(n=1, 10000, write("b286259.txt", n, " ", A286259(n)));
-
Python
from sympy import divisor_count as d def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1") def a(n): return T(a001511(n), n - d(n)) # Indranil Ghosh, May 07 2017
-
Scheme
(define (A286259 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A049820 n)) 2) (- (A001511 n)) (- (* 3 (A049820 n))) 2)))