cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286264 a(n) = 2*(ceiling((n^2)/2)+1) - 1.

Original entry on oeis.org

3, 5, 11, 17, 27, 37, 51, 65, 83, 101, 123, 145, 171, 197, 227, 257, 291, 325, 363, 401, 443, 485, 531, 577, 627, 677, 731, 785, 843, 901, 963, 1025, 1091, 1157, 1227, 1297, 1371, 1445, 1523, 1601, 1683, 1765, 1851, 1937, 2027, 2117, 2211, 2305, 2403, 2501
Offset: 1

Views

Author

Ralf Steiner, May 05 2017

Keywords

Examples

			n=2: (1*3*5*7)/(2*4*6*8) = (1*1*5*7)/(2*4*2*8) => a(2) = 5 = A151800(2^2).
n=3: (1*3*5*7*9*11*13*15*17)/(2*4*6*8*10*12*14*16*18) = (1*1*1*1*1*11*13*15*17)/(2*4*2*8*2*12*2*16*2) => a(3) = 11 = A151800(3^2).
		

Crossrefs

Cf. A007918 (nextprime), A151800 (version 2).

Programs

  • Magma
    [3/2 - (-1)^n/2 + n^2 : n in [1..100]]; // Wesley Ivan Hurt, May 05 2017
  • Maple
    A286264:=n->3/2 - (-1)^n/2 + n^2: seq(A286264(n), n=1..100); # Wesley Ivan Hurt, May 05 2017
  • Mathematica
    Table[2 (Ceiling[n^2/2] + 1) - 1, {n, 1, 40}]
  • PARI
    Vec(x*(3 - x + x^2 + x^3) / ((1 - x)^3*(1 + x)) + O(x^60)) \\ Colin Barker, May 05 2017
    

Formula

a(n) > n^2.
From Colin Barker, May 05 2017: (Start)
G.f.: x*(3 - x + x^2 + x^3) / ((1 - x)^3*(1 + x)).
a(n) = 3/2 - (-1)^n/2 + n^2.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>4. (End)
Sum_{n>=1} 1/a(n) = Pi*coth(Pi/2)/4 + Pi*tanh(Pi/sqrt(2))/(4*sqrt(2)) - 1/2. - Amiram Eldar, Jul 26 2024

Extensions

More terms from Colin Barker, May 05 2017