A286287 Least number to start a run of exactly n nondecreasing values of little omega (A001221).
106, 11, 13, 7, 512, 1, 1941, 141, 6847, 211, 195031, 82321, 808083, 534077, 3355906, 526093, 526889774, 127890361, 22529949392, 118968284927, 164159173895, 244022049199, 3022058317713, 585927201061
Offset: 1
Examples
We have omega(10) = 2, omega(11) = 1, omega(12) = 2, omega(13) = 1. Therefore 11 starts a run of exactly 2 consecutive integers (11, 12) which have nondecreasing (here: strictly increasing) values of omega. The 6 numbers from 1 through 6 yield values (0, 1, ..., 1, 2) for omega, therefore a(6) = 1. The 4 numbers from 7 through 10 yield values (1, 1, 1, 2) for omega, therefore a(4) = 7. A run of length 1 is a single number n such that omega(n-1) > omega(n) > omega(n+1). (If we had "<=" in one of the cases, it would be part of a run of at least 2 numbers with nondecreasing omega.) This first happens for a(1) = 106.
References
- M. F. Hasler, Posting to Sequence Fans Mailing List, May 06 2017
Crossrefs
Programs
-
Mathematica
Prepend[#, Module[{k = 2}, While[Sign@ Differences@ PrimeNu[k + {-1, 0, 1}] != {-1, -1}, k++]; k]] &@ Function[s, Function[r, If[Length@ # > 0, #[[1, 1]], -1] &@ Select[s, Length@ # == r &]] /@ Range@ Max@ Map[Length, s]]@ DeleteCases[SplitBy[MapIndexed[Function[k, (2 Boole[#1 <= #2] - 1) k & @@ #1]@ First@ #2 &, Partition[Array[PrimeNu, 10^7], 2, 1]], Sign], w_ /; First@ w < 0] (* Michael De Vlieger, May 19 2017 *)
-
PARI
alias("A","A286287"); A=vector(19); apply(scan(N, s=1, t=omega(s))=for(k=s+1, N, t>(t=omega(k))||next; k-s>#A||A[k-s]||printf(" a(%d)=%d, ", k-s, s)||A[k-s]=s; s=k); done, [4e6]) \\ Then the search may be extended using scan(END,START). - M. F. Hasler, May 16 2017
Extensions
Edited by M. F. Hasler, May 16 2017
a(17)-a(24) from Giovanni Resta, Jul 16 2019
Comments