A284597
a(n) is the least number that begins a run of exactly n consecutive numbers with a nondecreasing number of divisors, or -1 if no such number exists.
Original entry on oeis.org
46, 5, 43, 1, 1613, 241, 17011, 12853, 234613, 376741, 78312721, 125938261, 4019167441, 16586155153, 35237422882, 1296230533473, 42301168491121, 61118966262061
Offset: 1
241 = 241^1 => 2 divisors
242 = 2^1 * 11^2 => 6 divisors
243 = 3^5 => 6 divisors
244 = 2^2 * 61^1 => 6 divisors
245 = 5^1 * 7^2 => 6 divisors
246 = 2^1 * 3^1 * 41^1 => 8 divisors
247 = 13^1 * 19^1 => 4 divisors
So, 247 breaks the chain. 241 is the lowest number that is the beginning of exactly 6 consecutive numbers with a nondecreasing number of divisors. So it is the 6th term in the sequence.
Note also that a(5) is not 242, even though tau evaluated at 242, 243,..., 246 gives 5 nondecreasing values, because here we deal with full runs and 242 belongs to the run of 6 values starting at 241.
-
Function[s, {46}~Join~Map[Function[r, Select[s, Last@ # == r &][[1, 1]]], Range[2, Max[s[[All, -1]] ] ]]]@ Map[{#[[1, 1]], Length@ # + 1} &, DeleteCases[SplitBy[#, #[[-1]] >= 0 &], k_ /; k[[1, -1]] < 0]] &@ MapIndexed[{First@ #2, #1} &, Differences@ Array[DivisorSigma[0, #] &, 10^6]] (* Michael De Vlieger, May 06 2017 *)
-
genit()={for(n=1,20,q=0;ibgn=1;for(m=ibgn,9E99,mark1=q;q=numdiv(m);if(mark1==0,summ=0;dun=0;mark2=m);if(q>=mark1,summ+=1,dun=1);if(dun>0&&summ==n,print(n," ",mark2);break);if(dun>0&&summ!=n,q=0;m-=1)));} \\ Bill McEachen, Apr 25 2017
-
A284597=vector(19);apply(scan(N,s=1,t=numdiv(s))=for(k=s+1,N,t>(t=numdiv(k))||next;k-s>#A284597||A284597[k-s]||printf(" a(%d)=%d,",k-s,s)||A284597[k-s]=s;s=k);done,[10^6]) \\ Finds a(1..10) in ~ 1 sec, but would take 100 times longer to get one more term with scan(10^8). You may extend the search using scan(END,START). - M. F. Hasler, May 06 2017
-
from sympy import divisor_count
def A284597(n):
count, starti, s, i = 0,1,0,1
while True:
d = divisor_count(i)
if d < s:
if count == n:
return starti
starti = i
count = 0
s = d
i += 1
count += 1 # Chai Wah Wu, May 04 2017
A285893
Least number to start a run of exactly n nondecreasing values of sigma (sum of divisors, A000203).
Original entry on oeis.org
45, 5, 313, 1, 356067536821, 36721681
Offset: 1
We have the following values of sigma for n = 1..10:
n 1 2 3 4 5 6 7 8 9 10 ...
sigma(n) 0 1 1 2 1 2 1 3 2 2 ...
We see a run of 4 nondecreasing values starting at 1, ending at 4, therefore a(4) = 1. There is a run of 2 nondecreasing values starting at 5, ending at 6, therefore a(2) = 5.
Correspondingly, a run of length 1 corresponds to a number n such that sigma(n-1) > sigma(n) > sigma(n+1). This happens first at a(1) = 45.
-
Function[s, {45}~Join~Map[Function[r, Select[s, Last@ # == r &][[1, 1]]], Range[2, Max[s[[All, -1]] ] ]]]@ Map[{#[[1, 1]], Length@ # + 1} &, DeleteCases[SplitBy[#, #[[-1]] >= 0 &], k_ /; k[[1, -1]] < 0]] &@ MapIndexed[{First@ #2, #1} &, Differences@ Array[DivisorSigma[1, #] &, 10^6]] (* Michael De Vlieger, May 06 2017 *)
-
alias(A,A285893);A=vector(19);apply(scan(N,s=1,t=sigma(s))=for(k=s+1,N,t>(t=sigma(k))||next;k-s>#A||A[k-s]||printf("a(%d)=%d,",k-s,s)||A[k-s]=s;s=k);done,[10^8]) \\ Search may be extended using scan(END,START).
A286288
Least number to start a run of exactly n nondecreasing values of (big) Omega (A001222).
Original entry on oeis.org
46, 5, 43, 1, 2021, 121, 25202, 2521, 162121, 460801, 27268546, 23553169, 244068841, 913535283, 3195380866, 2088087121, 5988790769809, 2601212829601
Offset: 1
Omega(1..5) = (0, 1, 1, 2, 1), therefore the first run of 4 numbers with nondecreasing Omega (= A001222) starts at a(4) = 1.
Omega(4..7) = (2, 1, 2, 1), so the first run of 2 numbers with nondecreasing Omega starts at a(2) = 5.
A run of subsequent numbers with nondecreasing Omega is of length 1 if it consists of a single number n with Omega(n-1) > Omega(n) > Omega(n+1) (else n belongs to a run of length >= 2). This happens first for a(1) = 46.
- M. F. Hasler, Posting to Sequence Fans Mailing List, May 06 2017
-
Prepend[#, Module[{k = 2}, While[Sign@ Differences@ PrimeOmega[k + {-1, 0, 1}] != {-1, -1}, k++]; k]] &@ Function[s, Function[r, If[Length@ # > 0, #[[1, 1]], -1] &@ Select[s, Length@ # == r &]] /@ Range@ Max@ Map[Length, s]]@ DeleteCases[SplitBy[MapIndexed[Function[k, (2 Boole[#1 <= #2] - 1) k & @@ #1]@ First@ #2 &, Partition[Array[PrimeOmega, 10^7], 2, 1]], Sign], w_ /; First@ w < 0] (* Michael De Vlieger, May 19 2017 *)
-
alias('A, 'A286288);\\ A bug in PARI 2.9.2 requires the alias() to be issued on a line on itself.
A=vector(19); apply(scan(N, s=1, t=bigomega(s))=for(k=s+1, N, t>(t=bigomega(k))||next; k-s>#A||A[k-s]||printf(" a(%d)=%d, ", k-s, s)||A[k-s]=s; s=k); done, [1e7]) \\ Then the search may be extended using scan(END, START).
\\ M. F. Hasler, May 16 2017
A286289
Least number to start a run of exactly n nondecreasing values of the Euler phi function (A000010).
Original entry on oeis.org
314, 6, 315, 14, 1
Offset: 1
From _Michael De Vlieger_, May 19 2017: (Start)
A run of subsequent numbers with nondecreasing phi is of length 1 if it consists of a single number n with phi(n-1) > phi(n) > phi(n+1) (else n belongs to a run of length >= 2). This happens first for a(1) = 314.
Phi(14..18) = (6, 8, 8, 16, 6), therefore the first run of 4 numbers with nondecreasing phi(= A000010) starts at a(4) = 14. (End)
- M. F. Hasler, Posting to Sequence Fans Mailing List, May 06 2017
-
Prepend[#, Module[{k = 2}, While[Sign@ Differences@ EulerPhi[k + {-1, 0, 1}] != {-1, -1}, k++];k]] &@ Function[s, Function[r, If[Length@ # > 0, #[[1, 1]], -1] &@ Select[s, Length@ # == r &]] /@ Range@ Max@ Map[Length, s]]@ DeleteCases[SplitBy[MapIndexed[Function[k, (2 Boole[#1 <= #2] - 1) k & @@ #1]@ First@ #2 &, Partition[Array[EulerPhi, 10^7], 2, 1]], Sign], w_ /; First@ w < 0] (* Michael De Vlieger, May 19 2017 *)
A364805
a(n) is the smallest number k such that the number of distinct prime divisors of the n numbers from k through k+n-1 are in nondescending order.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 141, 141, 211, 211, 82321, 82321, 526093, 526093, 526093, 526093, 127890361, 127890361
Offset: 1
a(9) = 211 = a(10) as omega(211) = 1 < omega(212) = omega(213) = omega(214) = omega(215) = omega(216) = omega(217) = omega(218) = omega(219) = 2 < omega(220) = 3.
-
k = 1; Do[While[t = Table[PrimeNu[i], {i, k, k + n - 1}]; t != Sort[t], k++]; Print[k], {n, 1, 16}]
-
a(n) = my(k=1, list=List(vector(n, i, omega(i)))); while (vecsort(list) != list, listpop(list, 1); k++; listput(list, omega(k+n-1))); k; \\ Michel Marcus, Aug 14 2023
Showing 1-5 of 5 results.
Comments