A284597
a(n) is the least number that begins a run of exactly n consecutive numbers with a nondecreasing number of divisors, or -1 if no such number exists.
Original entry on oeis.org
46, 5, 43, 1, 1613, 241, 17011, 12853, 234613, 376741, 78312721, 125938261, 4019167441, 16586155153, 35237422882, 1296230533473, 42301168491121, 61118966262061
Offset: 1
241 = 241^1 => 2 divisors
242 = 2^1 * 11^2 => 6 divisors
243 = 3^5 => 6 divisors
244 = 2^2 * 61^1 => 6 divisors
245 = 5^1 * 7^2 => 6 divisors
246 = 2^1 * 3^1 * 41^1 => 8 divisors
247 = 13^1 * 19^1 => 4 divisors
So, 247 breaks the chain. 241 is the lowest number that is the beginning of exactly 6 consecutive numbers with a nondecreasing number of divisors. So it is the 6th term in the sequence.
Note also that a(5) is not 242, even though tau evaluated at 242, 243,..., 246 gives 5 nondecreasing values, because here we deal with full runs and 242 belongs to the run of 6 values starting at 241.
-
Function[s, {46}~Join~Map[Function[r, Select[s, Last@ # == r &][[1, 1]]], Range[2, Max[s[[All, -1]] ] ]]]@ Map[{#[[1, 1]], Length@ # + 1} &, DeleteCases[SplitBy[#, #[[-1]] >= 0 &], k_ /; k[[1, -1]] < 0]] &@ MapIndexed[{First@ #2, #1} &, Differences@ Array[DivisorSigma[0, #] &, 10^6]] (* Michael De Vlieger, May 06 2017 *)
-
genit()={for(n=1,20,q=0;ibgn=1;for(m=ibgn,9E99,mark1=q;q=numdiv(m);if(mark1==0,summ=0;dun=0;mark2=m);if(q>=mark1,summ+=1,dun=1);if(dun>0&&summ==n,print(n," ",mark2);break);if(dun>0&&summ!=n,q=0;m-=1)));} \\ Bill McEachen, Apr 25 2017
-
A284597=vector(19);apply(scan(N,s=1,t=numdiv(s))=for(k=s+1,N,t>(t=numdiv(k))||next;k-s>#A284597||A284597[k-s]||printf(" a(%d)=%d,",k-s,s)||A284597[k-s]=s;s=k);done,[10^6]) \\ Finds a(1..10) in ~ 1 sec, but would take 100 times longer to get one more term with scan(10^8). You may extend the search using scan(END,START). - M. F. Hasler, May 06 2017
-
from sympy import divisor_count
def A284597(n):
count, starti, s, i = 0,1,0,1
while True:
d = divisor_count(i)
if d < s:
if count == n:
return starti
starti = i
count = 0
s = d
i += 1
count += 1 # Chai Wah Wu, May 04 2017
A285893
Least number to start a run of exactly n nondecreasing values of sigma (sum of divisors, A000203).
Original entry on oeis.org
45, 5, 313, 1, 356067536821, 36721681
Offset: 1
We have the following values of sigma for n = 1..10:
n 1 2 3 4 5 6 7 8 9 10 ...
sigma(n) 0 1 1 2 1 2 1 3 2 2 ...
We see a run of 4 nondecreasing values starting at 1, ending at 4, therefore a(4) = 1. There is a run of 2 nondecreasing values starting at 5, ending at 6, therefore a(2) = 5.
Correspondingly, a run of length 1 corresponds to a number n such that sigma(n-1) > sigma(n) > sigma(n+1). This happens first at a(1) = 45.
-
Function[s, {45}~Join~Map[Function[r, Select[s, Last@ # == r &][[1, 1]]], Range[2, Max[s[[All, -1]] ] ]]]@ Map[{#[[1, 1]], Length@ # + 1} &, DeleteCases[SplitBy[#, #[[-1]] >= 0 &], k_ /; k[[1, -1]] < 0]] &@ MapIndexed[{First@ #2, #1} &, Differences@ Array[DivisorSigma[1, #] &, 10^6]] (* Michael De Vlieger, May 06 2017 *)
-
alias(A,A285893);A=vector(19);apply(scan(N,s=1,t=sigma(s))=for(k=s+1,N,t>(t=sigma(k))||next;k-s>#A||A[k-s]||printf("a(%d)=%d,",k-s,s)||A[k-s]=s;s=k);done,[10^8]) \\ Search may be extended using scan(END,START).
A286287
Least number to start a run of exactly n nondecreasing values of little omega (A001221).
Original entry on oeis.org
106, 11, 13, 7, 512, 1, 1941, 141, 6847, 211, 195031, 82321, 808083, 534077, 3355906, 526093, 526889774, 127890361, 22529949392, 118968284927, 164159173895, 244022049199, 3022058317713, 585927201061
Offset: 1
We have omega(10) = 2, omega(11) = 1, omega(12) = 2, omega(13) = 1. Therefore 11 starts a run of exactly 2 consecutive integers (11, 12) which have nondecreasing (here: strictly increasing) values of omega.
The 6 numbers from 1 through 6 yield values (0, 1, ..., 1, 2) for omega, therefore a(6) = 1. The 4 numbers from 7 through 10 yield values (1, 1, 1, 2) for omega, therefore a(4) = 7.
A run of length 1 is a single number n such that omega(n-1) > omega(n) > omega(n+1). (If we had "<=" in one of the cases, it would be part of a run of at least 2 numbers with nondecreasing omega.) This first happens for a(1) = 106.
- M. F. Hasler, Posting to Sequence Fans Mailing List, May 06 2017
-
Prepend[#, Module[{k = 2}, While[Sign@ Differences@ PrimeNu[k + {-1, 0, 1}] != {-1, -1}, k++]; k]] &@ Function[s, Function[r, If[Length@ # > 0, #[[1, 1]], -1] &@ Select[s, Length@ # == r &]] /@ Range@ Max@ Map[Length, s]]@ DeleteCases[SplitBy[MapIndexed[Function[k, (2 Boole[#1 <= #2] - 1) k & @@ #1]@ First@ #2 &, Partition[Array[PrimeNu, 10^7], 2, 1]], Sign], w_ /; First@ w < 0] (* Michael De Vlieger, May 19 2017 *)
-
alias("A","A286287"); A=vector(19); apply(scan(N, s=1, t=omega(s))=for(k=s+1, N, t>(t=omega(k))||next; k-s>#A||A[k-s]||printf(" a(%d)=%d, ", k-s, s)||A[k-s]=s; s=k); done, [4e6]) \\ Then the search may be extended using scan(END,START). - M. F. Hasler, May 16 2017
A286289
Least number to start a run of exactly n nondecreasing values of the Euler phi function (A000010).
Original entry on oeis.org
314, 6, 315, 14, 1
Offset: 1
From _Michael De Vlieger_, May 19 2017: (Start)
A run of subsequent numbers with nondecreasing phi is of length 1 if it consists of a single number n with phi(n-1) > phi(n) > phi(n+1) (else n belongs to a run of length >= 2). This happens first for a(1) = 314.
Phi(14..18) = (6, 8, 8, 16, 6), therefore the first run of 4 numbers with nondecreasing phi(= A000010) starts at a(4) = 14. (End)
- M. F. Hasler, Posting to Sequence Fans Mailing List, May 06 2017
-
Prepend[#, Module[{k = 2}, While[Sign@ Differences@ EulerPhi[k + {-1, 0, 1}] != {-1, -1}, k++];k]] &@ Function[s, Function[r, If[Length@ # > 0, #[[1, 1]], -1] &@ Select[s, Length@ # == r &]] /@ Range@ Max@ Map[Length, s]]@ DeleteCases[SplitBy[MapIndexed[Function[k, (2 Boole[#1 <= #2] - 1) k & @@ #1]@ First@ #2 &, Partition[Array[EulerPhi, 10^7], 2, 1]], Sign], w_ /; First@ w < 0] (* Michael De Vlieger, May 19 2017 *)
A364804
a(n) is the smallest number k such that the number of prime divisors (counted with multiplicity) of the n numbers from k through k+n-1 are in nondescending order.
Original entry on oeis.org
1, 1, 1, 1, 121, 121, 2521, 2521, 162121, 460801, 23553169, 23553169, 244068841, 913535283
Offset: 1
a(5) = 121 = a(6) as bigomega(121) = bigomega(122) = bigomega(123) = 2 < bigomega(124) = bigomega(125) = 3 < bigomega(126) = 4.
-
k = 1; Do[While[t = Table[PrimeOmega[i], {i, k, k + n - 1}]; t != Sort[t], k++]; Print[k], {n, 1, 10}]
-
a(n) = my(k=1, list=List(vector(n, i, bigomega(i)))); while (vecsort(list) != list, listpop(list, 1); k++; listput(list, bigomega(k+n-1))); k; \\ Michel Marcus, Aug 14 2023
Showing 1-5 of 5 results.
Comments