cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286290 A bisection of A064736.

Original entry on oeis.org

1, 6, 12, 20, 35, 56, 72, 90, 110, 143, 182, 210, 240, 272, 306, 342, 399, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1224, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550, 2652, 2756, 2862, 2970, 3135, 3306, 3422, 3540
Offset: 1

Views

Author

N. J. A. Sloane, May 23 2017

Keywords

Comments

The terms of A064736 lie on two (curved) lines; this is one of them.
To produce this set, start with S={1} and a counter c=2, then repeatedly add to S the element c*increment(c), where increment() adds 1 or 2 in case c+1 is already in S. - M. F. Hasler, May 23 2017
Alternate definition: {1} and numbers of the form m(m+1) if neither m nor m+1 is an earlier term, or (m-1)(m+1), if m > 1 is a term of the sequence. - M. F. Hasler, May 23 2017
By definition, complement of A286291. - David A. Corneth, May 25 2017
If the initial 1 is omitted, this is the complement of A121229. - N. J. A. Sloane, May 26 2017

Crossrefs

Programs

  • PARI
    A286290_list(Nmax,a=List(1),c=2)={while(#aM. F. Hasler, May 23 2017
    
  • PARI
    a(n) = my(r = 1); for(i = 2, n, r = nxt(r)); r
    is(n) = if(n < 6, return(n==1)); if(issquare(n+1, &n), is(n), if(sqrtint(4*n+1)^2 == 4*n+1, s = sqrtint(4*n+1); !(is(s\2) || is(s\2+1)), return(0)))
    nxt(n) = n==1&&return(6); if(issquare(n+1, &n), (n+1) * (n+2), my(m = sqrtint(n)); if(is(m + 2), (m + 1) * (m + 3), (m + 1) * (m + 2)))
    lista(n) = my(c = 1, l = List([1])); for(i=2, n, c = nxt(c); listput(l, c)); l \\ David A. Corneth, May 25 2017

Formula

a(n) ~ n^2*(1 + 1.5/n^c) with c=1/2. (Conjectured, although for small n around 10^5 a smaller c ~ 0.478 is a better fit to the data.) - M. F. Hasler, May 23 2017
For n around 10^8, c ~ 0.4848 is a better fit. - David A. Corneth, May 25 2017