cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286304 Number of connected induced (non-null) subgraphs of the complete binary tree with n nodes.

Original entry on oeis.org

1, 3, 6, 10, 17, 24, 37, 51, 78, 110, 173, 229, 340, 477, 750, 1024, 1571, 2253, 3616, 5024, 7839, 11356, 18389, 25173, 38740, 55697, 89610, 124870, 195389, 283536, 459829, 636123, 988710, 1429442, 2310905, 3227617, 5061040, 7352817, 11936370, 16526444
Offset: 1

Views

Author

Giovanni Resta, May 05 2017

Keywords

Crossrefs

Cf. A285934, A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286182 (prism), A286183 (antiprism), A286184 (helm), A286185 (Möbius ladder), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).

Programs

  • Mathematica
    Join[{1}, Table[g=KaryTree[n]; -1 + ParallelSum[Boole@ConnectedGraphQ@Subgraph[g, s], {s, Subsets@Range[n]}], {n, 2, 16}]]
    (* Second program: *)
    l[n_] := With[{h = 2^Floor[Log[2, n]]}, Min[h - 1, n - h/2]];
    b[n_] := b[n] = 1 + If[n <= 1, n, b[l[n]]*b[n - 1 - l[n]]];
    a[n_] := a[n] = If[n <= 1, n, b[n] - 1 + a[l[n]] + a[n - 1 - l[n]]];
    Array[a, 40] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
  • PARI
    l(n)={my(h=2^floor(log(n)/log(2))); min(h-1,n-h/2)}
    b(n)=1+if(n<=1,n,b(l(n))*b(n-1-l(n)));
    a(n)=if(n<=1,n,b(n)-1 + a(l(n)) + a(n-1-l(n))); \\ Andrew Howroyd, May 22 2017

Formula

a(2^k-1) = A285934(k-1).

Extensions

Terms a(35) and beyond from Andrew Howroyd, May 22 2017