A286304 Number of connected induced (non-null) subgraphs of the complete binary tree with n nodes.
1, 3, 6, 10, 17, 24, 37, 51, 78, 110, 173, 229, 340, 477, 750, 1024, 1571, 2253, 3616, 5024, 7839, 11356, 18389, 25173, 38740, 55697, 89610, 124870, 195389, 283536, 459829, 636123, 988710, 1429442, 2310905, 3227617, 5061040, 7352817, 11936370, 16526444
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..5651 (first 255 terms from Andrew Howroyd)
- Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph
- Wikipedia, Types of binary trees
Crossrefs
Programs
-
Mathematica
Join[{1}, Table[g=KaryTree[n]; -1 + ParallelSum[Boole@ConnectedGraphQ@Subgraph[g, s], {s, Subsets@Range[n]}], {n, 2, 16}]] (* Second program: *) l[n_] := With[{h = 2^Floor[Log[2, n]]}, Min[h - 1, n - h/2]]; b[n_] := b[n] = 1 + If[n <= 1, n, b[l[n]]*b[n - 1 - l[n]]]; a[n_] := a[n] = If[n <= 1, n, b[n] - 1 + a[l[n]] + a[n - 1 - l[n]]]; Array[a, 40] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
-
PARI
l(n)={my(h=2^floor(log(n)/log(2))); min(h-1,n-h/2)} b(n)=1+if(n<=1,n,b(l(n))*b(n-1-l(n))); a(n)=if(n<=1,n,b(n)-1 + a(l(n)) + a(n-1-l(n))); \\ Andrew Howroyd, May 22 2017
Formula
a(2^k-1) = A285934(k-1).
Extensions
Terms a(35) and beyond from Andrew Howroyd, May 22 2017