A286307 a(n) is the numerator of r(n), where r(n) = r(n-1) + r(n-2)/(2*(n-1)) with r(0) = 0, r(1) = 1.
0, 1, 1, 5, 17, 151, 823, 10631, 15871, 1344097, 12731713, 266731133, 3061359593, 15281334539, 1030023060151, 29833932429263, 461929309281059, 15229246883432833, 53257613193371021, 9845267571825141941, 191853269052081088769, 462422990938113014567, 168922073145947967975799
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..426
Programs
-
Maple
R[0]:= 0: R[1]:= 1: A[0]:= 0: A[1]:= 1: for n from 2 to 30 do R[n]:= R[n-1] + R[n-2]/(2*(n-1)); A[n]:= numer(R[n]); od: seq(A[i],i=0..30); # Robert Israel, May 25 2017
-
Mathematica
Numerator[RecurrenceTable[{r[n] == r[n - 1] + r[n - 2]/(2 (n - 1)), r[0] == 0, r[1] == 1}, r, {n, 0, 25}]]
-
PARI
a(n) = if(n < 2, return(n)); n++; my(v=vector(n)); v[1]=0; v[2] = 1; for(i = 3, n, v[i] = v[i-1] + v[i-2]/(2*i - 4)); numerator(v[#v]) \\ David A. Corneth, May 14 2017
Formula
From Wolfdieter Lang, Jun 07 2017: (Start)
G.f. of {r(n)}_{n>=0}: x*exp(-x/2)/(1-x)^(3/2).
a(n) = numerator(r(n)). See the name for the recurrence of r(n). (End)
Extensions
Name changed, a(0) and a(1) added by David A. Corneth, May 14 2017
a(20)-a(22) from David A. Corneth, May 21 2017
Name corrected by Robert Israel, May 25 2017