cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286331 Triangle read by rows: T(n,k) is the number of n X n matrices of rank k over F_2.

Original entry on oeis.org

1, 1, 1, 1, 9, 6, 1, 49, 294, 168, 1, 225, 7350, 37800, 20160, 1, 961, 144150, 4036200, 19373760, 9999360, 1, 3969, 2542806, 326932200, 8543828160, 39687459840, 20158709760, 1, 16129, 42677334, 23435953128, 2812314375360, 71124337751040, 325139829719040, 163849992929280
Offset: 0

Views

Author

Geoffrey Critzer, May 07 2017

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1,   1;
  1,   9,      6;
  1,  49,    294,     168;
  1, 225,   7350,   37800,    20160;
  1, 961, 144150, 4036200, 19373760, 9999360;
  ...
T(2,1) = 9 because there are 9, 2 X 2 matrices in F_2 that have rank 1: {{0, 0}, {0, 1}}, {{0, 0}, {1, 0}}, {{0, 0}, {1, 1}}, {{0, 1}, {0, 0}}, {{0, 1}, {0, 1}}, {{1, 0},  {0, 0}}, {{1, 0}, {1, 0}}, {{1,1}, {0, 0}}, {{1, 1}, {1, 1}}.
		

Crossrefs

Main diagonal is A002884.
Column for k = 1 is A060867.
Row sums are A002416.

Programs

  • Maple
    T:= (n,k) -> mul((2^n-2^j)^2/(2^k-2^j),j=0..k-1):
    seq(seq(T(n,k),k=0..n),n=0..10); # Robert Israel, May 15 2017
  • Mathematica
    q = 2; Table[Table[Product[(q^n - q^i)^2/(q^k - q^i), {i, 0, k - 1}], {k, 0, n}], {n, 0, 6}] // Grid

Formula

T(n,k) = Product_{j=0..k-1} (2^n - 2^j)^2/(2^k - 2^j) = A022166(n,k) * Product_{j=0..k-1} (2^n - 2^j).