A286342 Smallest beastly prime in base n: smallest prime p with a base-n expansion containing the substring 666.
2399, 3511, 4919, 6661, 2129, 11311, 14281, 17729, 21701, 26209, 26407, 37049, 43441, 50527, 252823, 66931, 64153, 86561, 19531, 109673, 122651, 136601, 151561, 167593, 184703, 202949, 222361, 242971, 50441, 287933, 261707, 338137, 365291, 393847, 79259
Offset: 7
Examples
For n = 7: 2399 written in base 7 is 6665. Since 2399 is the smallest prime that contains the substring 666 in its base-7 expansion, a(7) = 2399.
Links
Crossrefs
Cf. A131645.
Programs
-
Mathematica
Table[k = FromDigits[#, b]; While[Nand[PrimeQ@ k, Length@ SequencePosition[IntegerDigits[k, b], #] > 0], k++]; k, {b, 7, 41}] &@ ConstantArray[6, 3] (* Michael De Vlieger, May 08 2017 *)
-
PARI
a(n) = forprime(p=1, , my(subs=[6, 6, 6], dbn=digits(p, n)); for(k=1, #dbn-2, my(v=[dbn[k], dbn[k+1], dbn[k+2]]); if(v==subs, return(p))))
Formula
n^3 < a(n) << n^20. - Charles R Greathouse IV, May 13 2017
Probably n^3 < a(n) < n^4 for all but finitely many n. It appears the only exceptions are 21 and 52. If there are any others they are larger than 10^7; the expected number of larger exceptions is about 10^-89814. - Charles R Greathouse IV, May 13 2017
Comments