A286359 Compound filter: a(n) = P(sigma(n), sigma(2n)), where P(n,k) is sequence A000027 used as a pairing function, and sigma is the sum of divisors (A000203).
4, 39, 109, 217, 259, 753, 473, 1005, 1288, 1729, 1093, 3769, 1499, 3105, 4489, 4309, 2503, 8295, 3101, 8557, 8033, 7057, 4489, 16713, 7534, 9633, 12601, 15281, 7051, 28513, 8033, 17829, 18193, 15985, 18193, 40561, 11363, 19761, 24809, 37765, 13903, 50817, 15269, 34537, 48283, 28513, 18193, 70249, 25708, 47679, 41113, 47069, 23059, 79521, 41113, 67281, 50801
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pairing Function
- Index entries for sequences related to sigma(n)
Crossrefs
Programs
-
PARI
A000203(n) = sigma(n); A286359(n) = (1/2)*(2 + ((A000203(n)+A000203(n+n))^2) - A000203(n) - 3*A000203(n+n)); for(n=1, 10000, write("b286359.txt", n, " ", A286359(n)));
-
Python
from sympy import divisor_sigma as D def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a(n): return T(D(n), D(2*n)) # Indranil Ghosh, May 12 2017
-
Scheme
(define (A286359 n) (* (/ 1 2) (+ (expt (+ (A000203 n) (A000203 (* 2 n))) 2) (- (A000203 n)) (- (* 3 (A000203 (* 2 n)))) 2)))