cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286364 Compound filter: a(n) = P(A286361(n), A286363(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 2, 1, 7, 3, 2, 2, 3, 2, 5, 1, 3, 7, 2, 3, 16, 2, 2, 2, 10, 3, 29, 2, 3, 5, 2, 1, 16, 3, 5, 7, 3, 2, 5, 3, 3, 16, 2, 2, 12, 2, 2, 2, 7, 10, 5, 3, 3, 29, 5, 2, 16, 3, 2, 5, 3, 2, 67, 1, 21, 16, 2, 3, 16, 5, 2, 7, 3, 3, 14, 2, 16, 5, 2, 3, 121, 3, 2, 16, 21, 2, 5, 2, 3, 12, 5, 2, 16, 2, 5, 2, 3, 7, 67, 10, 3, 5, 2, 3, 23, 3, 2, 29, 3, 5, 5, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 08 2017

Keywords

Comments

This sequence packs the values of A286361(n) and A286363(n) to a single value with the pairing function A000027. These two components essentially give the prime signature of 4k+1 part and the prime signature of 4k+3 part, and they can be accessed from a(n) with functions A002260 and A004736. For example, A004431 lists all such numbers that the first component is larger than one and the second component is a perfect square.

Crossrefs

Programs

  • Python
    from sympy import factorint
    from operator import mul
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def A(n, k):
        f = factorint(n)
        return 1 if n == 1 else reduce(mul, [1 if i%4==k else i**f[i] for i in f])
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a(n): return T(a046523(n/A(n, 1)), a046523(n/A(n, 3))) # Indranil Ghosh, May 09 2017
  • Scheme
    (define (A286364 n) (* (/ 1 2) (+ (expt (+ (A286361 n) (A286363 n)) 2) (- (A286361 n)) (- (* 3 (A286363 n))) 2)))
    

Formula

a(n) = (1/2)*(2+((A286361(n)+A286363(n))^2) - A286361(n) - 3*A286363(n)).
Other identities. For all n >= 1:
a(A267099(n)) = A038722(a(n)).