A286366 Compound filter: a(n) = 2*A286365(n) + floor(A072400(n)/4).
4, 6, 8, 4, 13, 11, 9, 6, 28, 14, 8, 8, 13, 11, 21, 4, 12, 30, 8, 13, 65, 11, 9, 11, 40, 14, 116, 9, 13, 23, 9, 6, 64, 14, 20, 28, 13, 11, 21, 14, 12, 66, 8, 8, 49, 11, 9, 8, 28, 42, 20, 13, 13, 119, 21, 11, 64, 14, 8, 21, 13, 11, 269, 4, 84, 66, 8, 12, 65, 23, 9, 30, 12, 14, 56, 8, 65, 23, 9, 13, 484, 14, 8, 65, 85, 11, 21, 11, 12, 50, 20, 9, 65, 11, 21, 11
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Python
from sympy import factorint from operator import mul def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def A(n, k): f = factorint(n) return 1 if n == 1 else reduce(mul, [1 if i%4==k else i**f[i] for i in f]) def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a286364(n): return T(a046523(n/A(n, 1)), a046523(n/A(n, 3))) def a007814(n): return 1 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1") def a286365(n): return 2*a286364(n) + a007814(n)%2 def a072400(n): return int(str(int(''.join(map(str, digits(n, 4)[1:]))[::-1]))[::-1], 4)%8 def a(n): return 2*a286365(n) + int(a072400(n)/4) # Indranil Ghosh, May 09 2017
-
Scheme
(define (A286366 n) (+ (* 2 (A286365 n)) (floor->exact (/ (A072400 n) 4))))
Comments