cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286367 Compound filter: a(n) = P(A001511(n), A286364(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 2, 6, 4, 5, 2, 10, 22, 8, 2, 9, 4, 5, 11, 15, 4, 30, 2, 13, 121, 5, 2, 14, 46, 8, 407, 9, 4, 17, 2, 21, 121, 8, 11, 39, 4, 5, 11, 19, 4, 138, 2, 9, 67, 5, 2, 20, 22, 57, 11, 13, 4, 437, 11, 14, 121, 8, 2, 24, 4, 5, 2212, 28, 211, 138, 2, 13, 121, 17, 2, 49, 4, 8, 92, 9, 121, 17, 2, 26, 7261, 8, 2, 156, 211, 5, 11, 14, 4, 80, 11, 9, 121, 5, 11, 27, 4, 30
Offset: 1

Views

Author

Antti Karttunen, May 08 2017

Keywords

Comments

This sequence contains, in addition to the information contained in A286364 (which packs the values of A286361(n) and A286363(n) to a single value with the pairing function A000027), also the highest power of 2 dividing n. Note that this is more information than A286365, as it stores only the parity of the exponent of 2.
For all i, j: a(i) = a(j) => A286161(i) = A286161(j).

Crossrefs

Programs

  • Python
    from sympy import factorint
    from operator import mul
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def A(n, k):
        f = factorint(n)
        return 1 if n == 1 else reduce(mul, [1 if i%4==k else i**f[i] for i in f])
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a286364(n): return T(a046523(n/A(n, 1)), a046523(n/A(n, 3)))
    def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1")
    def a(n): return T(a001511(n), a286364(n)) # Indranil Ghosh, May 09 2017
  • Scheme
    (define (A286367 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A286364 n)) 2) (- (A001511 n)) (- (* 3 (A286364 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A286364(n))^2) - A001511(n) - 3*A286364(n)).