A286367 Compound filter: a(n) = P(A001511(n), A286364(n)), where P(n,k) is sequence A000027 used as a pairing function.
1, 3, 2, 6, 4, 5, 2, 10, 22, 8, 2, 9, 4, 5, 11, 15, 4, 30, 2, 13, 121, 5, 2, 14, 46, 8, 407, 9, 4, 17, 2, 21, 121, 8, 11, 39, 4, 5, 11, 19, 4, 138, 2, 9, 67, 5, 2, 20, 22, 57, 11, 13, 4, 437, 11, 14, 121, 8, 2, 24, 4, 5, 2212, 28, 211, 138, 2, 13, 121, 17, 2, 49, 4, 8, 92, 9, 121, 17, 2, 26, 7261, 8, 2, 156, 211, 5, 11, 14, 4, 80, 11, 9, 121, 5, 11, 27, 4, 30
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pairing Function
Programs
-
Python
from sympy import factorint from operator import mul def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def A(n, k): f = factorint(n) return 1 if n == 1 else reduce(mul, [1 if i%4==k else i**f[i] for i in f]) def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a286364(n): return T(a046523(n/A(n, 1)), a046523(n/A(n, 3))) def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1") def a(n): return T(a001511(n), a286364(n)) # Indranil Ghosh, May 09 2017
-
Scheme
(define (A286367 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A286364 n)) 2) (- (A001511 n)) (- (* 3 (A286364 n))) 2)))
Comments