A286369 Compound filter: a(n) = 2*A286364(n) + floor(A072400(n)/4).
2, 2, 4, 2, 7, 5, 5, 2, 14, 6, 4, 4, 7, 5, 11, 2, 6, 14, 4, 7, 33, 5, 5, 5, 20, 6, 58, 5, 7, 11, 5, 2, 32, 6, 10, 14, 7, 5, 11, 6, 6, 32, 4, 4, 25, 5, 5, 4, 14, 20, 10, 7, 7, 59, 11, 5, 32, 6, 4, 11, 7, 5, 135, 2, 42, 32, 4, 6, 33, 11, 5, 14, 6, 6, 28, 4, 33, 11, 5, 7, 242, 6, 4, 33, 43, 5, 11, 5, 6, 24, 10, 5, 33, 5, 11, 5, 6, 14, 134, 20, 7, 11, 5, 6, 46, 6
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Python
from sympy.ntheory.factor_ import digits from sympy import factorint from operator import mul def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def A(n, k): f = factorint(n) return 1 if n == 1 else reduce(mul, [1 if i%4==k else i**f[i] for i in f]) def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a286364(n): return T(a046523(n/A(n, 1)), a046523(n/A(n, 3))) def a072400(n): return int(str(int(''.join(map(str, digits(n, 4)[1:]))[::-1]))[::-1], 4)%8 def a(n): return 2*a286364(n) + int(a072400(n)/4) # Indranil Ghosh, May 09 2017
-
Scheme
(define (A286369 n) (+ (* 2 (A286364 n)) (floor->exact (/ (A072400 n) 4))))
Comments