cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286388 Compound filter ("discard the smallest prime factor" & "number of trailing 1-bits in base-2"): a(n) = P(A032742(n), A001511(1+n)), where P(n,k) is sequence A000027 used as a pairing function, with a(1) = 0.

Original entry on oeis.org

0, 1, 4, 3, 2, 6, 7, 10, 9, 15, 4, 21, 2, 28, 41, 36, 2, 45, 4, 55, 35, 66, 7, 78, 20, 91, 64, 105, 2, 120, 16, 136, 77, 153, 43, 171, 2, 190, 133, 210, 2, 231, 4, 253, 135, 276, 11, 300, 35, 325, 188, 351, 2, 378, 102, 406, 209, 435, 4, 465, 2, 496, 372, 528, 104, 561, 4, 595, 299, 630, 7, 666, 2, 703, 376, 741, 77, 780, 11, 820, 405, 861, 4, 903, 170, 946
Offset: 1

Views

Author

Antti Karttunen, May 13 2017

Keywords

Crossrefs

Programs

  • Python
    from sympy import divisors
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a001511(n): return bin(n)[2:][::-1].index("1") + 1
    def a(n): return 0 if n==1 else T(divisors(n)[-2], a001511(n + 1)) # Indranil Ghosh, May 14 2017
  • Scheme
    (define (A286388 n) (if (= 1 n) 0 (* (/ 1 2) (+ (expt (+ (A032742 n) (A001511 (+ 1 n))) 2) (- (A032742 n)) (- (* 3 (A001511 (+ 1 n)))) 2))))
    

Formula

a(1) = 0, for n > 1, a(n) = (1/2)*(2 + ((A032742(n)+A001511(1+n))^2) - A032742(n) - 3*A001511(1+n)).