A286399 Expansion of eta(q^2)^12 * eta(q^4)^8 / eta(q)^8 in powers of q.
0, 0, 1, 8, 32, 96, 244, 528, 1024, 1856, 3126, 5016, 7808, 11616, 16808, 23856, 32768, 44352, 59293, 77352, 100032, 128128, 161052, 201264, 249856, 305280, 371294, 450128, 537856, 640992, 762744, 894528, 1048576, 1228224, 1419858, 1642080, 1897376, 2167008
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
CoefficientList[x^2 * Series[QPochhammer[x^2]^12 * QPochhammer[x^4]^8 / QPochhammer[x]^8, {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 08 2023 *)
Formula
G.f.: x^2 * Product_{k>0} (1 - x^(2 * k))^12 * (1 - x^(4 * k))^8 / (1 - x^k)^8.
Comments