cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286446 Number of non-equivalent ways to tile an n X n X n triangular area with four 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-16) of 1 X 1 X 1 tiles.

Original entry on oeis.org

0, 1, 6, 142, 1280, 7301, 29603, 96485, 266636, 652908, 1452054, 2992513, 5789499, 10629381, 18660890, 31530854, 51525116, 81772345, 126449707, 191075297, 282794784, 410784700, 586640186, 824912741, 1143620051, 1564946921, 2115898646, 2829194838, 3744093216, 4907506597
Offset: 3

Views

Author

Heinrich Ludwig, May 12 2017

Keywords

Comments

Rotations and reflections of tilings are not counted. If they are to be counted, see A286439. Tiles of the same size are indistinguishable.
For an analogous problem concerning square tiles, see A279113.

Examples

			There are 6 non-equivalent ways of tiling a triangular area of side 5 with 4 tiles of side 2 and an appropriate number (= 9) of tiles of side 1. See illustration in links section.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x^4*(1 + 4*x + 127*x^2 + 983*x^3 + 4353*x^4 + 11916*x^5 + 22875*x^6 + 31058*x^7 + 30066*x^8 + 18947*x^9 + 5576*x^10 - 2441*x^11 - 3003*x^12 - 698*x^13 + 707*x^14 + 536*x^15 + 71*x^16 - 73*x^17 - 37*x^18 - 8*x^19) / ((1 - x)^9*(1 + x)^4*(1 + x + x^2)^3) + O(x^60))) \\ Colin Barker, May 12 2017

Formula

a(n) = (n^8 -12*n^7 +6*n^6 +432*n^5 -1249*n^4 -5028*n^3 +21820*n^2 +12384*n -94000)/144 + IF(MOD(n, 2) = 1, -8*n^3 +72*n^2 -208*n +189)/24 + IF(MOD(n, 3) = 0, -n^2 +3*n +7)/9 for n >= 5.
G.f.: x^4*(1 + 4*x + 127*x^2 + 983*x^3 + 4353*x^4 + 11916*x^5 + 22875*x^6 + 31058*x^7 + 30066*x^8 + 18947*x^9 + 5576*x^10 - 2441*x^11 - 3003*x^12 - 698*x^13 + 707*x^14 + 536*x^15 + 71*x^16 - 73*x^17 - 37*x^18 - 8*x^19) / ((1 - x)^9*(1 + x)^4*(1 + x + x^2)^3). - Colin Barker, May 12 2017