cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A286525 Number of inequivalent n X n matrices over GF(4) under action of dihedral group of the square D_4, with a fourth of 1's, 2's, 3's and 4's (ordered occurrences rounded up/down if n^2 != 0 mod 4).

Original entry on oeis.org

1, 1, 3, 978, 7885536, 1030690752000, 2681594035175055000, 111102459342780333711432912, 82765346051371433995689422809152600, 984929152509556378339959477248973638627262816, 201525938526971993585665495909682003042353826154218776128
Offset: 0

Views

Author

María Merino, Imanol Unanue, May 11 2017

Keywords

Examples

			For n=2 the a(2)=3 solutions are the colorings of 2 X 2 matrices in 4 colors inequivalent under the action of D_4 with exactly 1 occurrence of each color (coefficient of x1^1 x2^1 x3^1 x4^1).
		

Crossrefs

Formula

G.f.: g(x1,x2,x3,x4) = 1/8*(y1^(n^2) + 2*y1^n*y2^((n^2 - n)/2) + 3*y2^(n^2/2) + 2*y4^(n^2/4)) if n even and 1/8*(y1^(n^2) + 4*y1^n*y2^((n^2 - n)/2) + y1*y2^((n^2 - 1)/2) + 2*y1*y4^((n^2 - 1)/4)) if n odd, where coefficient correspond to y1 = x1 + x2 + x3 + x4, y2 = x1^2 + x2^2 + x3^2 + x4^2, y4 = x1^4 + x2^4 + x3^4 + x4^2 and occurrences of numbers are ceiling(n^2/4) for 1's and floor(n^2/4) for 2's, 3's and 4's.

A286526 Number of inequivalent n X n matrices over GF(5) under action of dihedral group of the square D_4, with a fifth of 1's, 2's, 3's, 4's and 5's (ordered occurrences rounded up/down if n^2 != 0 mod 5).

Original entry on oeis.org

1, 1, 1, 2874, 84086160, 77920099694640, 1787320731699689472000, 1208369393947533515948886636000, 22022604563875220592723146462014970246400, 10631042739086498005729294276105510004209560426195000, 136864426940639977623403211038729959780835360788855628470904385280
Offset: 0

Views

Author

María Merino, Imanol Unanue, May 11 2017

Keywords

Examples

			For n=3 the a(3)=2874 solutions are colorings of 3 X 3 matrices in 5 colors inequivalent under the action of D_4 with exactly occurrences 2, 2, 2, 2, 1 of each color (coefficient of x1^2 x2^2 x3^2 x4^2 x5^1).
		

Crossrefs

Formula

G.f.: g(x1,x2,x3,x4,x5) = 1/8*(y1^(n^2) + 2*y1^n*y2^((n^2 - n)/2) + 3*y2^(n^2/2) + 2*y4^(n^2/4)) if n even and 1/8*(y1^(n^2) + 4*y1^n*y2^((n^2 - n)/2) + y1*y2^((n^2 - 1)/2) + 2*y1*y4^((n^2 - 1)/4)) if n odd, where coefficient correspond to y1 = Sum_{i=1..5} x_i, y2 = Sum_{i=1..5} x_i^2, y4 = Sum_{i=1..5} x_i^4 and occurrences of numbers are ceiling(n^2/5) for the first k numbers and floor(n^2/5) for the last (5-k) numbers, if n^2 = k mod 5.

A287239 Number of inequivalent n X n matrices over an alphabet of size 6 under action of dihedral group of the square D_4, with one-sixth each of 1s, 2s, 3s, 4s, 5s and 6s (ordered occurrences rounded up/down if n^2 != 0 mod 6).

Original entry on oeis.org

1, 1, 1, 5688, 504508320, 2029169127793680, 333772217080092664473600, 1966297518276227170017585421188600, 474436367892839446541884570454351985506872320, 4529567636413022031420100639004131328550592354551163392000, 1664947024157601976065851576560401128416782438266187161307818265349050000
Offset: 0

Views

Author

María Merino, Imanol Unanue, May 22 2017

Keywords

Comments

Computed using Polya's enumeration theorem for coloring.

Examples

			For n = 3 the a(3) = 5688 solutions are colorings of 3 X 3 matrices in 6 colors inequivalent under the action of D_4 with exactly 2 occurrences of each color (coefficient of x1^2 x2^2 x3^2 x4^2 x5^2 x6^2).
		

Crossrefs

Formula

G.f.: g(x1,x2,x3,x4,x5,x6)=1/8*(y1^(n^2)+2*y1^n*y2^((n^2-n)/2)+3*y2^(n^2/2)+2*y4^(n^2/4)) if n even and 1/8*(y1^(n^2)+4*y1^n*y2^((n^2-n)/2)+y1*y2^((n^2-1)/2)+2*y1*y4^((n^2-1)/4)) if n odd, where coefficient correspond to y1=Sum_{i=1..6} x_i, y2=Sum_{i=1..6} x_i^2, y4=Sum_{i=1..6} x_i^4 and occurrences of numbers are ceiling(n^2/6) for the first k numbers and floor(n^2/6) for the last (6-k) numbers, if n^2 = k mod 6.

A287245 Number of inequivalent n X n matrices over GF(7) under action of dihedral group of the square D_4, with one-seventh each of 1's, 2's, 3's, 4's, 5's, 6's and 7's (ordered occurrences rounded up/down if n^2 != 0 mod 7).

Original entry on oeis.org

1, 1, 1, 11340, 2270280240, 27055587870486000, 21628439666761521875561280, 920451958269648700957746787694592000, 1914192808178753950843058828570207003149548000000, 216425158352284448578663515683744576588775769063470820304640000
Offset: 0

Views

Author

María Merino, Imanol Unanue, May 22 2017

Keywords

Comments

Computed using Polya's enumeration theorem for coloring.

Examples

			For n = 3 the a(3) = 11340 solutions are colorings of 3 X 3 matrices in 7 colors inequivalent under the action of D_4 with exactly occurrences 2, 2, 1, 1, 1, 1, 1 of each color (coefficient of x1^2 x2^2 x3^1 x4^1 x5^1 x6^1 x7^1).
		

Crossrefs

Formula

G.f.: g(x1,x2,x3,x4,x5,x6,x7)=1/8*(y1^(n^2)+2*y1^n*y2^((n^2-n)/2)+3*y2^(n^2/2)+2*y4^(n^2/4)) if n even and 1/8*(y1^(n^2)+4*y1^n*y2^((n^2-n)/2)+y1*y2^((n^2-1)/2)+2*y1*y4^((n^2-1)/4)) if n odd, where coefficient correspond to y1=Sum_{i=1..7} x_i, y2=Sum_{i=1..7} x_i^2, y4=Sum_{i=1..7} x_i^4 and occurrences of numbers are ceiling(n^2/7) for the first k numbers and floor(n^2/7) for the last (7-k) numbers, if n^2 = k mod 7.

A287249 Number of inequivalent n X n matrices over GF(8) under action of dihedral group of the square D_4, with one-eighth each of 1's, 2's, 3's, 4's, 5's, 6's, 7's and 8's (ordered occurrences rounded up/down if n^2 != 0 mod 8).

Original entry on oeis.org

1, 1, 1, 22680, 10216251360, 288592936632000000, 675888739586283307003920000, 150403128386758194407881602780164966400, 2270715491453850844620503532869818724155487772912000, 2190916399747036514334089808617857198357442887303702763561256837120
Offset: 0

Views

Author

María Merino, Imanol Unanue, May 22 2017

Keywords

Comments

Computed using Polya's enumeration theorem for coloring.

Examples

			For n = 3 the a(4) = 10216251360 solutions are colorings of 4 X 4 matrices in 8 colors inequivalent under the action of D_4 with exactly 2 occurrences of each color (coefficient of x1^2 x2^2 x3^2 x4^2 x5^2 x6^2 x7^2 x8^2).
		

Crossrefs

Formula

G.f.: g(x1,x2,x3,x4,x5,x6,x7,x8) = (1/8)*(y1^(n^2)+2*y1^n*y2^((n^2-n)/2)+3*y2^(n^2/2)+2*y4^(n^2/4)) if n even and (1/8)*(y1^(n^2)+4*y1^n*y2^((n^2-n)/2)+y1*y2^((n^2-1)/2)+2*y1*y4^((n^2-1)/4)) if n odd, where coefficient correspond to y1=Sum_{i=1..8} x_i, y2=Sum_{i=1..8} x_i^2, y4=Sum_{i=1..8} x_i^4 and occurrences of numbers are ceiling(n^2/8) for the first k numbers and floor(n^2/8) for the last (8-k) numbers, if n^2 = k mod 8.

A287250 Number of inequivalent n X n matrices over GF(9) under action of dihedral group of the square D_4, with one-ninth each of 1's, 2's, 3's, 4's, 5's, 6's, 7's, 8's and 9's (ordered occurrences rounded up/down if n^2 != 0 mod 9).

Original entry on oeis.org

1, 1, 1, 45360, 20432427120, 1731557619792000000, 17601269260059379482191694720, 11370476506038919496334983007474778275840, 944848320304251231447932170156537415535539635814400000, 6641336088298446224006555306105706090482482272285249518936232000000000
Offset: 0

Views

Author

María Merino, Imanol Unanue, May 22 2017

Keywords

Comments

Computed using Polya's enumeration theorem for coloring.

Examples

			For n = 3 the a(3) = 45360 solutions are colorings of 3 X 3 matrices in 9 colors inequivalent under the action of D_4 with exactly 1 occurrence of each color (coefficient of x1^1 x2^1 x3^1 x4^1 x5^1 x6^1 x7^1 x8^1 x9^1).
		

Crossrefs

Formula

G.f.: g(x1,x2,x3,x4,x5,x6,x7,x8,x9) = (1/8)*(y1^(n^2)+2*y1^n*y2^((n^2-n)/2)+3*y2^(n^2/2)+2*y4^(n^2/4)) if n even and (1/8)*(y1^(n^2)+4*y1^n*y2^((n^2-n)/2)+y1*y2^((n^2-1)/2)+2*y1*y4^((n^2-1)/4)) if n odd, where coefficient correspond to y1=Sum_{i=1..9} x_i, y2=Sum_{i=1..9} x_i^2, y4=Sum_{i=1..9} x_i^4 and occurrences of numbers are ceiling(n^2/9) for the first k numbers and floor(n^2/9) for the last (9-k) numbers, if n^2 = k mod 9.

A287261 Number of inequivalent n X n matrices over an alphabet of size 10 under action of dihedral group of the square D_4, with one-tenth of 1's, 2's, 3's, 4's, 5's, 6's, 7's, 8's, 9's and 0's (ordered occurrences rounded up/down if n^2 != 0 mod 10).

Original entry on oeis.org

1, 1, 1, 1, 40864828320, 7792009289281728000, 187746872107299580970294400000, 614005731326101652800803825889630961295360, 176445174659483893854948844253232539237396497554309120000, 7090469783239448892319287907564531885316857076509137838529329991091840000
Offset: 0

Views

Author

María Merino, Imanol Unanue, May 22 2017

Keywords

Comments

Computed using Polya's enumeration theorem for coloring.

Examples

			For n = 3 the a(4) = 40864828320 solutions are colorings of 4 X 4 matrices in 10 colors inequivalent under the action of D_4 with exactly occurrences 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 of each color (coefficient of x1^2 x2^2 x3^2 x4^2 x5^2 x6^2 x7^1 x8^1 x9^1 x10^1).
		

Crossrefs

Formula

G.f.: g(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10) = (1/8)*(y1^(n^2)+2*y1^n*y2^((n^2-n)/2)+3*y2^(n^2/2)+2*y4^(n^2/4)) if n even and (1/8)*(y1^(n^2)+4*y1^n*y2^((n^2-n)/2)+y1*y2^((n^2-1)/2)+2*y1*y4^((n^2-1)/4)) if n odd, where coefficient correspond to y1=Sum_{i=1..10} x_i, y2=Sum_{i=1..10} x_i^2, y4=Sum_{i=1..10} x_i^4 and occurrences of numbers are ceiling(n^2/10) for the first k numbers and floor(n^2/10) for the last (10-k) numbers, if n^2 = k mod 10.
Showing 1-7 of 7 results.