cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A286452 Compound filter (largest prime factor of n & prime signature of 2n-1): a(n) = P(A061395(n), A046523(2n-1)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 2, 5, 2, 18, 5, 14, 16, 5, 9, 50, 5, 42, 59, 9, 2, 73, 23, 44, 31, 14, 20, 199, 5, 18, 61, 5, 40, 115, 9, 77, 67, 50, 35, 40, 5, 90, 179, 61, 9, 391, 14, 185, 50, 9, 100, 205, 23, 14, 94, 35, 27, 1006, 5, 20, 40, 44, 115, 395, 31, 228, 131, 59, 2, 61, 20, 295, 442, 54, 14, 320, 23, 346, 265, 9, 44, 125, 61, 275, 31, 23, 104, 1349, 14, 52, 314, 65, 125, 430
Offset: 1

Views

Author

Antti Karttunen, May 14 2017

Keywords

Crossrefs

Programs

  • Python
    from sympy import primepi, primefactors, factorint
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a061395(n): return 0 if n==1 else primepi(primefactors(n)[-1])
    def a(n): return T(a061395(n), a046523(2*n - 1)) # Indranil Ghosh, May 14 2017
  • Scheme
    (define (A286452 n) (* (/ 1 2) (+ (expt (+ (A061395 n) (A046523 (+ n n -1))) 2) (- (A061395 n)) (- (* 3 (A046523 (+ n n -1)))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A061395(n)+A046523(2n-1))^2) - A061395(n) - 3*A046523(2n-1)).
Showing 1-1 of 1 results.