cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286462 Compound filter (3-adic valuation & the length of rightmost run of 1's in base-2): a(n) = P(A051064(n), A089309(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 1, 5, 1, 1, 5, 4, 1, 6, 1, 2, 5, 1, 4, 12, 1, 1, 6, 2, 1, 3, 2, 4, 5, 1, 1, 14, 4, 1, 12, 11, 1, 3, 1, 2, 6, 1, 2, 8, 1, 1, 3, 2, 2, 6, 4, 7, 5, 1, 1, 5, 1, 1, 14, 4, 4, 3, 1, 2, 12, 1, 11, 31, 1, 1, 3, 2, 1, 3, 2, 4, 6, 1, 1, 5, 2, 1, 8, 7, 1, 15, 1, 2, 3, 1, 2, 8, 2, 1, 6, 2, 4, 3, 7, 11, 5, 1, 1, 9, 1, 1, 5, 4, 1, 3, 1, 2, 14, 1, 4, 12, 4, 1, 3, 2, 1
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Crossrefs

Programs

  • PARI
    A051064(n) = if(n<1, 0, 1+valuation(n, 3));
    A089309(n) = valuation((n/2^valuation(n, 2))+1, 2); \\ After Ralf Stephan
    A286462(n) = (1/2)*(2 + ((A051064(n)+A089309(n))^2) - A051064(n) - 3*A089309(n));
    for(n=1, 10000, write("b286462.txt", n, " ", A286462(n)));
    
  • Python
    from sympy import divisors, divisor_count, mobius
    def a051064(n): return -sum([mobius(3*d)*divisor_count(n/d) for d in divisors(n)])
    def v(n): return bin(n)[2:][::-1].index("1")
    def a089309(n): return  0 if n==0 else v(n/2**v(n) + 1)
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a(n): return T(a051064(n), a089309(n)) # Indranil Ghosh, May 11 2017
  • Scheme
    (define (A286462 n) (* (/ 1 2) (+ (expt (+ (A051064 n) (A089309 n)) 2) (- (A051064 n)) (- (* 3 (A089309 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A051064(n)+A089309(n))^2) - A051064(n) - 3*A089309(n)).