A286462 Compound filter (3-adic valuation & the length of rightmost run of 1's in base-2): a(n) = P(A051064(n), A089309(n)), where P(n,k) is sequence A000027 used as a pairing function.
1, 1, 5, 1, 1, 5, 4, 1, 6, 1, 2, 5, 1, 4, 12, 1, 1, 6, 2, 1, 3, 2, 4, 5, 1, 1, 14, 4, 1, 12, 11, 1, 3, 1, 2, 6, 1, 2, 8, 1, 1, 3, 2, 2, 6, 4, 7, 5, 1, 1, 5, 1, 1, 14, 4, 4, 3, 1, 2, 12, 1, 11, 31, 1, 1, 3, 2, 1, 3, 2, 4, 6, 1, 1, 5, 2, 1, 8, 7, 1, 15, 1, 2, 3, 1, 2, 8, 2, 1, 6, 2, 4, 3, 7, 11, 5, 1, 1, 9, 1, 1, 5, 4, 1, 3, 1, 2, 14, 1, 4, 12, 4, 1, 3, 2, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pairing Function
Programs
-
PARI
A051064(n) = if(n<1, 0, 1+valuation(n, 3)); A089309(n) = valuation((n/2^valuation(n, 2))+1, 2); \\ After Ralf Stephan A286462(n) = (1/2)*(2 + ((A051064(n)+A089309(n))^2) - A051064(n) - 3*A089309(n)); for(n=1, 10000, write("b286462.txt", n, " ", A286462(n)));
-
Python
from sympy import divisors, divisor_count, mobius def a051064(n): return -sum([mobius(3*d)*divisor_count(n/d) for d in divisors(n)]) def v(n): return bin(n)[2:][::-1].index("1") def a089309(n): return 0 if n==0 else v(n/2**v(n) + 1) def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a(n): return T(a051064(n), a089309(n)) # Indranil Ghosh, May 11 2017
-
Scheme
(define (A286462 n) (* (/ 1 2) (+ (expt (+ (A051064 n) (A089309 n)) 2) (- (A051064 n)) (- (* 3 (A089309 n))) 2)))