A286463 Compound filter (3-adic valuation & prime-signature): a(n) = P(A051064(n), A046523(n)), where P(n,k) is sequence A000027 used as a pairing function.
1, 2, 5, 7, 2, 23, 2, 29, 18, 16, 2, 80, 2, 16, 23, 121, 2, 94, 2, 67, 23, 16, 2, 302, 7, 16, 59, 67, 2, 467, 2, 497, 23, 16, 16, 706, 2, 16, 23, 277, 2, 467, 2, 67, 94, 16, 2, 1178, 7, 67, 23, 67, 2, 355, 16, 277, 23, 16, 2, 1832, 2, 16, 94, 2017, 16, 467, 2, 67, 23, 436, 2, 2704, 2, 16, 80, 67, 16, 467, 2, 1129, 195, 16, 2, 1832, 16, 16, 23, 277, 2, 1894, 16
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pairing Function
Programs
-
PARI
A051064(n) = if(n<1, 0, 1+valuation(n, 3)); A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A286463(n) = (1/2)*(2 + ((A051064(n)+A046523(n))^2) - A051064(n) - 3*A046523(n)); for(n=1, 10000, write("b286463.txt", n, " ", A286463(n)));
-
Python
from sympy import factorint, divisors, divisor_count, mobius def a051064(n): return -sum([mobius(3*d)*divisor_count(n/d) for d in divisors(n)]) def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def a(n): return T(a051064(n), a046523(n)) # Indranil Ghosh, May 11 2017
-
Scheme
(define (A286463 n) (* (/ 1 2) (+ (expt (+ (A051064 n) (A046523 n)) 2) (- (A051064 n)) (- (* 3 (A046523 n))) 2)))