cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286473 Compound filter (for counting primes of form 4k+1, 4k+2 and 4k+3): a(n) = 4*A032742(n) + (A020639(n) mod 4), a(1) = 1.

Original entry on oeis.org

1, 6, 7, 10, 5, 14, 7, 18, 15, 22, 7, 26, 5, 30, 23, 34, 5, 38, 7, 42, 31, 46, 7, 50, 21, 54, 39, 58, 5, 62, 7, 66, 47, 70, 29, 74, 5, 78, 55, 82, 5, 86, 7, 90, 63, 94, 7, 98, 31, 102, 71, 106, 5, 110, 45, 114, 79, 118, 7, 122, 5, 126, 87, 130, 53, 134, 7, 138, 95, 142, 7, 146, 5, 150, 103, 154, 47, 158, 7, 162, 111, 166, 7, 170, 69, 174, 119, 178, 5, 182, 55
Offset: 1

Views

Author

Antti Karttunen, May 11 2017

Keywords

Comments

For all i, j: a(i) = a(j) => A079635(i) = A079635(j). This follows because A079635(n) can be computed by recursively invoking a(n), without needing any other information.

Crossrefs

Cf. A001511, A007814, A065339, A079635, A083025 (some of the matched sequences).

Programs

  • Mathematica
    With[{k = 4}, Table[Function[{p, d}, k d + Mod[p, k] - k Boole[n == 1]] @@ {#, n/#} &@ FactorInteger[n][[1, 1]], {n, 91}]] (* Michael De Vlieger, May 12 2017 *)
  • Python
    from sympy import divisors, primefactors
    def a(n): return 1 if n==1 else 4*divisors(n)[-2] + (min(primefactors(n))%4) # Indranil Ghosh, May 12 2017
  • Scheme
    (define (A286473 n) (if (= 1 n) n (+ (* 4 (A032742 n)) (modulo (A020639 n) 4))))
    

Formula

a(1) = 1, for n > 1, a(n) = 4*A032742(n) + (A020639(n) mod 4).