cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286515 a(n) = denominator(Bernoulli_{n}(x)) / denominator(Bernoulli_{n}).

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 6, 1, 10, 1, 6, 1, 210, 5, 6, 1, 30, 5, 210, 7, 330, 5, 30, 1, 546, 7, 14, 1, 30, 1, 462, 77, 3570, 35, 6, 1, 51870, 455, 210, 7, 2310, 55, 2310, 7, 4830, 35, 210, 1, 6630, 221, 858, 11, 330, 55, 798, 19, 870, 5, 30, 1, 930930, 5005, 4290
Offset: 0

Views

Author

Keywords

Comments

a(n) is a squarefree integer for all n, a(n) is odd if n>=0 is even, and a(n) is even if n>=3 is odd. See "Power-sum denominators", Thm. 4, pp. 12-13, and "The denominators of power sums of arithmetic progressions", Thm. 3, pp. 3 and 11-12.

Crossrefs

Programs

  • Maple
    seq(denom(bernoulli(n,x))/denom(bernoulli(n)), n=0..100); # Robert Israel, May 24 2017
  • Mathematica
    Table[ Denominator[ Together[ BernoulliB[n, x]]]/Denominator[ BernoulliB[n]], {n, 0, 63}]
  • PARI
    apply( a(n)=denominator(content(bernpol(n)))/denominator(bernfrac(n)), [1..50]) \\ M. F. Hasler, Dec 10 2018

Formula

a(n) = A144845(n)/A027642(n) = A195441(n-1)/gcd(A195441(n-1),A027642(n)).