A286515 a(n) = denominator(Bernoulli_{n}(x)) / denominator(Bernoulli_{n}).
1, 1, 1, 2, 1, 6, 1, 6, 1, 10, 1, 6, 1, 210, 5, 6, 1, 30, 5, 210, 7, 330, 5, 30, 1, 546, 7, 14, 1, 30, 1, 462, 77, 3570, 35, 6, 1, 51870, 455, 210, 7, 2310, 55, 2310, 7, 4830, 35, 210, 1, 6630, 221, 858, 11, 330, 55, 798, 19, 870, 5, 30, 1, 930930, 5005, 4290
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..5900
- Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, The denominators of power sums of arithmetic progressions, Integers 18 (2018), #A95, 17 pp.; arXiv:1705.05331 [math.NT], 2017.
Programs
-
Maple
seq(denom(bernoulli(n,x))/denom(bernoulli(n)), n=0..100); # Robert Israel, May 24 2017
-
Mathematica
Table[ Denominator[ Together[ BernoulliB[n, x]]]/Denominator[ BernoulliB[n]], {n, 0, 63}]
-
PARI
apply( a(n)=denominator(content(bernpol(n)))/denominator(bernfrac(n)), [1..50]) \\ M. F. Hasler, Dec 10 2018
Comments