A286530 a(n) = d(n+d(n)) - d(n), where d(n) is the number of divisors of n (A000005).
1, 1, 0, -1, 0, 0, 1, 2, 3, 0, 0, 0, 2, 2, -2, -1, 0, 2, 2, -2, -1, 0, 1, -2, 3, 4, -2, -2, 0, -4, 2, -2, -2, 0, 0, -3, 2, 4, -2, 2, 0, -2, 4, 0, -2, 2, 1, -6, 3, 2, 0, -2, 2, -4, -2, -1, -2, 0, 0, 0, 4, 4, -2, -5, 0, -4, 2, -2, -2, 0, 0, 0, 4, 4, -1, -2, 1, -4, 3, 2, -1, 0, 2, 0, -2, 8, 0, 4, 2, -4, 0, 0, -2, 2, 2, 0, 4, 2, 2, -7, 0, 0, 6, 2, -6, 4, 0, 4, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[DivisorSigma[0, n + DivisorSigma[0, n]] - DivisorSigma[0, n], {n, 109}] (* Michael De Vlieger, May 21 2017 *)
-
PARI
A286530(n) = (numdiv(n+numdiv(n)) - numdiv(n));
-
Python
from sympy import divisor_count as d def a(n): return d(n + d(n)) - d(n) # Indranil Ghosh, May 21 2017
-
Scheme
(define (A286530 n) (- (A286529 n) (A000005 n)))